Compare commits

..

7 Commits
0.5.5 ... 0.7.2

Author SHA1 Message Date
cab9ed705e order by year
Some checks failed
ci/woodpecker/push/woodpecker Pipeline failed
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-12-15 18:19:38 +01:00
2faa19bc54 stats 2
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-12-15 18:09:13 +01:00
7f52839877 stats
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-12-15 18:01:49 +01:00
2d48e87893 ntp graphs
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-13 10:50:11 +01:00
6c1a62e09d nicer graph
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
2025-03-12 21:13:24 +01:00
a5d3b13629 changes
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
2025-03-12 20:49:44 +01:00
83f71b3f81 fix, 3
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-12 16:22:07 +01:00
7 changed files with 134 additions and 219 deletions

View File

@@ -4,15 +4,15 @@ steps:
settings:
repo: ${FORGE_NAME}/${CI_REPO}
registry:
from_secret: container_registry
tags: latest,${CI_COMMIT_SHA},${CI_COMMIT_TAG}
from_secret: local_registry
tags: latest,${CI_COMMIT_TAG}
username:
from_secret: container_registry_username
from_secret: local_username
password:
from_secret: container_registry_password
from_secret: local_password
dockerfile: Dockerfile
when:
- event: [push, tag]
- event: tag
scan:
image: quay.io/wollud1969/woodpecker-helper:0.5.1
@@ -27,7 +27,7 @@ steps:
from_secret: dtrack_api_url
commands:
- HOME=/home/`id -nu`
- TAG="${CI_COMMIT_TAG:-$CI_COMMIT_SHA}"
- TAG="${CI_COMMIT_TAG}"
- |
trivy image \
--server $TRIVY_URL \
@@ -50,7 +50,7 @@ steps:
- event: [push, tag]
deploy:
image: quay.io/wollud1969/k8s-admin-helper:0.2.1
image: quay.io/wollud1969/k8s-admin-helper:0.4.1
environment:
KUBE_CONFIG_CONTENT:
from_secret: kube_config

View File

@@ -7,22 +7,7 @@ IMAGE_NAME=numberimage
docker build --progress=plain -t $IMAGE_NAME .
SECRETS=`mktemp`
gpg --decrypt --passphrase $GPG_PASSPHRASE --yes --batch --output $SECRETS ./deployment/secrets.asc
. $SECRETS
rm $SECRETS
DB_NAMESPACE=database1
DB_DEPLOYNAME=database
REDIS_NAMESPACE=redis
REDIS_SERVICE_NAME=redis
PGHOST=`kubectl get services $DB_DEPLOYNAME -n $DB_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDISHOST=`kubectl get services $REDIS_SERVICE_NAME -n $REDIS_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDIS_URL=redis://$REDISHOST:6379/4
. load-debug-env
docker run \
-it \

15
load-debug-env Normal file
View File

@@ -0,0 +1,15 @@
SECRETS=`mktemp`
gpg --decrypt --passphrase $GPG_PASSPHRASE --yes --batch --output $SECRETS ./deployment/secrets.asc
. $SECRETS
rm $SECRETS
DB_NAMESPACE=database1
DB_DEPLOYNAME=database
REDIS_NAMESPACE=redis
REDIS_SERVICE_NAME=redis
PGHOST=`kubectl get services $DB_DEPLOYNAME -n $DB_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDISHOST=`kubectl get services $REDIS_SERVICE_NAME -n $REDIS_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDIS_URL=redis://$REDISHOST:6379/4

View File

@@ -1,9 +1,9 @@
from flask import Flask, session, g, render_template_string
from flask import Flask, session, g, render_template_string, Response
from loguru import logger
import json
import plotly.express as px
import plotly.graph_objects as po
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.ticker import ScalarFormatter
import pandas as pd
import psycopg
import sqlalchemy
@@ -15,142 +15,55 @@ from app import oidc
@app.route('/ntpserver')
def ntpserver():
try:
dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
query = """
select time_bucket('5 minutes', time) as bucket,
device,
avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp,
max(cast(values->'stratum'->>'value' as int)) as stratum
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'TSM' and attributes->>'Label' = 'david'
group by bucket, device
order by bucket, device
"""
df = pd.read_sql(query, con=engine)
fig = po.Figure()
fig.add_trace(po.Scatter(x=df['bucket'], y=df['rootdisp'], mode='lines', name='Root Dispersion', yaxis='y1', line=dict(color='red')))
fig.add_trace(po.Scatter(x=df['bucket'], y=df['stratum'], mode='lines', name='Stratum', yaxis='y2', line=dict(color='blue')))
fig.update_layout(
title='NTP Server Numbers',
# Linke Y-Achse
yaxis=dict(
title='Root Dispersion',
ticksuffix=' ms'
),
# Rechte Y-Achse
yaxis2=dict(
title='Stratum',
overlaying='y', # Legt die zweite Y-Achse über die erste
side='right', # Setzt sie auf die rechte Seite
tickmode='linear', # Stellt sicher, dass die Ticks in festen Intervallen sind
dtick=1, # Zeigt nur ganzzahlige Ticks
),
legend=dict(x=0.05, y=1) # Position der Legende
)
graph_html_1 = fig.to_html(full_html=False, default_height='30%')
query = """
select time_bucket('5 minutes', time) as bucket,
device,
avg(cast(values->'time-req-pkts'->>'value' as float)) as packets
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'SNMP' and attributes->>'Label' = 'david'
group by bucket, device
order by bucket, device
"""
df = pd.read_sql(query, con=engine)
fig_2 = px.line(df, x='bucket', y='packets')
fig_2.update_layout(
xaxis_title="",
yaxis_title="",
yaxis_ticksuffix="p/s",
title=f"Time Requests"
)
graph_html_2 = fig_2.to_html(full_html=False, default_height='30%')
query = """
select time_bucket('5 minutes', time) as bucket,
device,
avg(cast(values->'load1'->>'value' as float)) as loadaverage1min
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'SNMP' and attributes->>'Label' = 'david'
group by bucket, device
order by bucket, device
"""
df = pd.read_sql(query, con=engine)
fig_3 = px.line(df, x='bucket', y='loadaverage1min')
fig_3.update_layout(
xaxis_title="",
yaxis_title="",
title=f"CPU Load"
)
graph_html_3 = fig_3.to_html(full_html=False, default_height='30%')
return render_template_string(f"""
<html>
<head>
<title>NTP Server Numbers</title>
</head>
<body>
{graph_html_1}
{graph_html_2}
{graph_html_3}
</body>
</html>
""")
except Exception as e:
raise Exception(f"Error when querying NTP server values: {e}")
finally:
if dbh is not None:
dbh.close()
@app.route('/plot.png')
def plot_png():
@app.route('/ntp/stratum-rootdisp.png')
def stratum_rootdisp_png():
dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
query = """
select time_bucket('5 minutes', time) as bucket,
device,
attributes->>'Label' as device,
avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp,
max(cast(values->'stratum'->>'value' as int)) as stratum
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'TSM' and attributes->>'Label' = 'david'
group by bucket, device
order by bucket, device
application = 'SNMP' and attributes->>'Label' IN ('harrison', 'david')
group by bucket, attributes->>'Label'
order by bucket, attributes->>'Label'
"""
df = pd.read_sql(query, con=engine)
fig, ax1 = plt.subplots()
df['rootdisp'] = df['rootdisp'] / 1e6
ax1.plot(df['bucket'], df['rootdisp'], 'r-', label='Root Dispersion')
# Extract date for title
plot_date = df['bucket'].dt.date.iloc[0] if not df.empty else "Unknown Date"
# Create figure with two side-by-side subplots
fig, axes = plt.subplots(1, 2, figsize=(15, 5), sharex=True)
for i, device in enumerate(['harrison', 'david']):
ax1 = axes[i]
ax2 = ax1.twinx()
device_df = df[df['device'] == device]
ax1.plot(device_df['bucket'], device_df['rootdisp'], 'r-', label='Root Dispersion')
ax1.set_xlabel('Time')
ax1.set_ylabel('Root Dispersion (ms)', color='r')
ax1.tick_params(axis='y', labelcolor='r')
ax2 = ax1.twinx()
ax2.plot(df['bucket'], df['stratum'], 'b-', label='Stratum')
ax2.plot(device_df['bucket'], device_df['stratum'], 'b-', label='Stratum')
ax2.set_ylabel('Stratum', color='b')
ax2.tick_params(axis='y', labelcolor='b')
ax2.set_yticks(range(int(df['stratum'].min()), int(df['stratum'].max()) + 1))
ax2.set_yticks(range(int(device_df['stratum'].min()), int(device_df['stratum'].max()) + 1))
fig.suptitle('NTP Server Numbers')
ax1.set_title(f'{device.capitalize()}')
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
fig.autofmt_xdate(rotation=45)
fig.suptitle(f'Stratum and Root Dispersion - {plot_date}')
fig.tight_layout()
img_io = io.BytesIO()
@@ -160,3 +73,57 @@ def plot_png():
return Response(img_io, mimetype='image/png')
@app.route('/ntp/packets-load.png')
def packets_load_png():
dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
query = """
select time_bucket('5 minutes', time) as bucket,
attributes->>'Label' as device,
avg(cast(values->'load1'->>'value' as float)) as load,
avg(cast(values->'processed-pkts'->>'value' as int)) as packets
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'SNMP' and attributes->>'Label' IN ('harrison', 'david')
group by bucket, attributes->>'Label'
order by bucket, attributes->>'Label'
"""
df = pd.read_sql(query, con=engine)
# Extract date for title
plot_date = df['bucket'].dt.date.iloc[0] if not df.empty else "Unknown Date"
# Create figure with two side-by-side subplots
fig, axes = plt.subplots(1, 2, figsize=(15, 5), sharex=True)
for i, device in enumerate(['harrison', 'david']):
ax1 = axes[i]
ax2 = ax1.twinx()
device_df = df[df['device'] == device]
ax1.plot(device_df['bucket'], device_df['load'], 'r-', label='CPU Load')
ax1.set_xlabel('Time')
ax1.set_ylabel('Load', color='r')
ax1.tick_params(axis='y', labelcolor='r')
ax2.plot(device_df['bucket'], device_df['packets'], 'b-', label='Processed Packets')
ax2.set_ylabel('Packets', color='b')
ax2.tick_params(axis='y', labelcolor='b')
ax1.set_title(f'{device.capitalize()}')
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
fig.autofmt_xdate(rotation=45)
fig.suptitle(f'CPU Load and Processed Packets - {plot_date}')
fig.tight_layout()
img_io = io.BytesIO()
plt.savefig(img_io, format='png')
img_io.seek(0)
plt.close(fig)
return Response(img_io, mimetype='image/png')

View File

@@ -12,25 +12,17 @@ from app import app
from app import oidc
@app.route('/pvstats')
@app.route('/')
@oidc.require_login
def pvstats():
try:
stepX_time = time.time()
dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
step0_time = time.time()
df = pd.read_sql("SELECT month, cast(year AS varchar), current_energy AS value FROM pv_energy_by_month", con=engine)
step1_time = time.time()
duration1 = step1_time - step0_time
logger.info(f"{duration1=}")
df = pd.read_sql("SELECT month, cast(year AS varchar), current_energy AS value FROM pv_energy_by_month ORDER BY year, month", con=engine)
fig_1 = px.bar(df, x='month', y='value', color='year', barmode='group')
step2_time = time.time()
duration2 = step2_time - step1_time
logger.info(f"{duration2=}")
fig_1.update_layout(
title=f"Jahreswerte Exportierte Energie {duration1:.3f}, {duration2:.3f}",
title=f"Jahreswerte Exportierte Energie PV-Anlage",
xaxis_title="",
yaxis_title="",
legend_title="Jahr",
@@ -43,74 +35,34 @@ def pvstats():
)
graph_html_1 = fig_1.to_html(full_html=False, default_height='30%')
step3_time = time.time()
df = pd.read_sql("SELECT time_bucket('5 minutes', time) AS bucket, AVG(power) AS avg_power FROM pv_power_v WHERE time >= date_trunc('day', now()) - '1 day'::interval AND time < date_trunc('day', now()) GROUP BY bucket ORDER BY bucket", con=engine)
step4_time = time.time()
duration3 = step4_time - step3_time
logger.info(f"{duration3=}")
fig_2 = px.line(df, x='bucket', y='avg_power')
step5_time = time.time()
duration4 = step5_time - step4_time
logger.info(f"{duration4=}")
df = pd.read_sql("SELECT month, cast(year AS varchar), current_energy AS value FROM car_energy_by_month ORDER BY year, month", con=engine)
fig_2 = px.bar(df, x='month', y='value', color='year', barmode='group')
fig_2.update_layout(
title=f"Jahreswerte Verbrauch Elektroauto",
xaxis_title="",
yaxis_title="",
title=f"Export gestern {duration3:.3f}, {duration4:.3f}",
yaxis=dict(ticksuffix=" W")
legend_title="Jahr",
xaxis=dict(
tickmode="array",
tickvals=list(range(1, 13)), # Monate 112
ticktext=["Jan", "Feb", "Mär", "Apr", "Mai", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Dez"]
),
yaxis=dict(ticksuffix=" kWh")
)
graph_html_2 = fig_2.to_html(full_html=False, default_height='30%')
step6_time = time.time()
df = pd.read_sql("SELECT time_bucket('5 minutes', time) AS bucket, AVG(power) AS avg_power FROM pv_power_v WHERE time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval GROUP BY bucket ORDER BY bucket", con=engine)
step7_time = time.time()
duration5 = step7_time - step6_time
logger.info(f"{duration5=}")
fig_3 = px.line(df, x='bucket', y='avg_power')
step8_time = time.time()
duration6 = step8_time - step7_time
logger.info(f"{duration6=}")
fig_3.update_layout(
xaxis_title="",
yaxis_title="",
title=f"Export heute {duration5:.3f}, {duration6:.3f}",
yaxis=dict(ticksuffix=" W")
)
graph_html_3 = fig_3.to_html(full_html=False, default_height='30%')
stepZ_time = time.time()
duration7 = stepZ_time - stepX_time
logger.info(f"{duration7=}")
return render_template_string(f"""
<html>
<head>
<title>Jahreswerte PV-Energie</title>
<title>Jahreswerte PV und Auto</title>
</head>
<body>
{graph_html_1}
{graph_html_2}
{graph_html_3}
<div style="height:9vh; background-color:lightgrey; font-family: Courier, Consolas, monospace;">
<table style="border-collapse: collapse;">
<style>
td.smallsep {{ padding-right: 10px }}
td.largesep {{ padding-right: 30px }}
</style>
<tr>
<td class="smallsep">Query 1:</td><td class="largesep"> {duration1:.3f} s</td><td class="smallsep">Graph 1:</td><td> {duration2:.3f} s</td>
</tr><tr>
<td class="smallsep">Query 2:</td><td class="largesep"> {duration3:.3f} s</td><td class="smallsep">Graph 2:</td><td> {duration4:.3f} s</td>
</tr><tr>
<td class="smallsep">Query 3:</td><td class="largesep"> {duration5:.3f} s</td><td class="smallsep">Graph 3:</td><td> {duration6:.3f} s</td>
</tr><tr>
<td class="smallsep">Total:</td><td> {duration7:.3f} s</td><td></td><td></td>
</tr>
</table>
</div>
</body>
</html>
""")
except Exception as e:
raise Exception(f"Error when querying energy export values: {e}")
raise Exception(f"Error when querying energy values: {e}")
finally:
if dbh is not None:
dbh.close()

View File

@@ -5,10 +5,6 @@ from app import app
from app import oidc
@app.route('/')
def index():
abort(404)
@app.route('/generate_image')
def generate_image():
img = Image.new('RGB', (200, 100), color=(255, 255, 255))

View File

@@ -10,7 +10,7 @@ import ntp_routes
if __name__ == '__main__':
app.run(port=8080)
app.run(host='0.0.0.0', port=8080)
else:
exposed_app = ProxyFix(app, x_for=1, x_host=1)