Compare commits

..

7 Commits
0.5.4 ... 0.7.1

Author SHA1 Message Date
2faa19bc54 stats 2
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-12-15 18:09:13 +01:00
7f52839877 stats
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-12-15 18:01:49 +01:00
2d48e87893 ntp graphs
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-13 10:50:11 +01:00
6c1a62e09d nicer graph
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
2025-03-12 21:13:24 +01:00
a5d3b13629 changes
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
2025-03-12 20:49:44 +01:00
83f71b3f81 fix, 3
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-12 16:22:07 +01:00
730168ab61 fix, 2
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-12 16:18:28 +01:00
7 changed files with 134 additions and 218 deletions

View File

@@ -4,15 +4,15 @@ steps:
settings: settings:
repo: ${FORGE_NAME}/${CI_REPO} repo: ${FORGE_NAME}/${CI_REPO}
registry: registry:
from_secret: container_registry from_secret: local_registry
tags: latest,${CI_COMMIT_SHA},${CI_COMMIT_TAG} tags: latest,${CI_COMMIT_TAG}
username: username:
from_secret: container_registry_username from_secret: local_username
password: password:
from_secret: container_registry_password from_secret: local_password
dockerfile: Dockerfile dockerfile: Dockerfile
when: when:
- event: [push, tag] - event: tag
scan: scan:
image: quay.io/wollud1969/woodpecker-helper:0.5.1 image: quay.io/wollud1969/woodpecker-helper:0.5.1
@@ -27,7 +27,7 @@ steps:
from_secret: dtrack_api_url from_secret: dtrack_api_url
commands: commands:
- HOME=/home/`id -nu` - HOME=/home/`id -nu`
- TAG="${CI_COMMIT_TAG:-$CI_COMMIT_SHA}" - TAG="${CI_COMMIT_TAG}"
- | - |
trivy image \ trivy image \
--server $TRIVY_URL \ --server $TRIVY_URL \
@@ -50,7 +50,7 @@ steps:
- event: [push, tag] - event: [push, tag]
deploy: deploy:
image: quay.io/wollud1969/k8s-admin-helper:0.2.1 image: quay.io/wollud1969/k8s-admin-helper:0.4.1
environment: environment:
KUBE_CONFIG_CONTENT: KUBE_CONFIG_CONTENT:
from_secret: kube_config from_secret: kube_config

View File

@@ -7,22 +7,7 @@ IMAGE_NAME=numberimage
docker build --progress=plain -t $IMAGE_NAME . docker build --progress=plain -t $IMAGE_NAME .
SECRETS=`mktemp` . load-debug-env
gpg --decrypt --passphrase $GPG_PASSPHRASE --yes --batch --output $SECRETS ./deployment/secrets.asc
. $SECRETS
rm $SECRETS
DB_NAMESPACE=database1
DB_DEPLOYNAME=database
REDIS_NAMESPACE=redis
REDIS_SERVICE_NAME=redis
PGHOST=`kubectl get services $DB_DEPLOYNAME -n $DB_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDISHOST=`kubectl get services $REDIS_SERVICE_NAME -n $REDIS_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDIS_URL=redis://$REDISHOST:6379/4
docker run \ docker run \
-it \ -it \

15
load-debug-env Normal file
View File

@@ -0,0 +1,15 @@
SECRETS=`mktemp`
gpg --decrypt --passphrase $GPG_PASSPHRASE --yes --batch --output $SECRETS ./deployment/secrets.asc
. $SECRETS
rm $SECRETS
DB_NAMESPACE=database1
DB_DEPLOYNAME=database
REDIS_NAMESPACE=redis
REDIS_SERVICE_NAME=redis
PGHOST=`kubectl get services $DB_DEPLOYNAME -n $DB_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDISHOST=`kubectl get services $REDIS_SERVICE_NAME -n $REDIS_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDIS_URL=redis://$REDISHOST:6379/4

View File

@@ -1,161 +1,129 @@
from flask import Flask, session, g, render_template_string from flask import Flask, session, g, render_template_string, Response
from loguru import logger from loguru import logger
import json import json
import plotly.express as px
import plotly.graph_objects as po
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.ticker import ScalarFormatter
import pandas as pd import pandas as pd
import psycopg import psycopg
import sqlalchemy import sqlalchemy
import time import time
import io
from app import app from app import app
from app import oidc from app import oidc
@app.route('/ntpserver')
def ntpserver():
try:
dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
query = """ @app.route('/ntp/stratum-rootdisp.png')
select time_bucket('5 minutes', time) as bucket, def stratum_rootdisp_png():
device,
avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp,
max(cast(values->'stratum'->>'value' as int)) as stratum
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'TSM' and attributes->>'Label' = 'david'
group by bucket, device
order by bucket, device
"""
df = pd.read_sql(query, con=engine)
fig = po.Figure()
fig.add_trace(po.Scatter(x=df['bucket'], y=df['rootdisp'], mode='lines', name='Root Dispersion', yaxis='y1', line=dict(color='red')))
fig.add_trace(po.Scatter(x=df['bucket'], y=df['stratum'], mode='lines', name='Stratum', yaxis='y2', line=dict(color='blue')))
fig.update_layout(
title='NTP Server Numbers',
# Linke Y-Achse
yaxis=dict(
title='Root Dispersion',
ticksuffix=' ms'
),
# Rechte Y-Achse
yaxis2=dict(
title='Stratum',
overlaying='y', # Legt die zweite Y-Achse über die erste
side='right', # Setzt sie auf die rechte Seite
tickmode='linear', # Stellt sicher, dass die Ticks in festen Intervallen sind
dtick=1, # Zeigt nur ganzzahlige Ticks
),
legend=dict(x=0.05, y=1) # Position der Legende
)
graph_html_1 = fig.to_html(full_html=False, default_height='30%')
query = """
select time_bucket('5 minutes', time) as bucket,
device,
avg(cast(values->'time-req-pkts'->>'value' as float)) as packets
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'SNMP' and attributes->>'Label' = 'david'
group by bucket, device
order by bucket, device
"""
df = pd.read_sql(query, con=engine)
fig_2 = px.line(df, x='bucket', y='packets')
fig_2.update_layout(
xaxis_title="",
yaxis_title="",
yaxis_ticksuffix="p/s",
title=f"Time Requests"
)
graph_html_2 = fig_2.to_html(full_html=False, default_height='30%')
query = """
select time_bucket('5 minutes', time) as bucket,
device,
avg(cast(values->'load1'->>'value' as float)) as loadaverage1min
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'SNMP' and attributes->>'Label' = 'david'
group by bucket, device
order by bucket, device
"""
df = pd.read_sql(query, con=engine)
fig_3 = px.line(df, x='bucket', y='loadaverage1min')
fig_3.update_layout(
xaxis_title="",
yaxis_title="",
title=f"CPU Load"
)
graph_html_3 = fig_3.to_html(full_html=False, default_height='30%')
return render_template_string(f"""
<html>
<head>
<title>NTP Server Numbers</title>
</head>
<body>
{graph_html_1}
{graph_html_2}
{graph_html_3}
</body>
</html>
""")
except Exception as e:
raise Exception(f"Error when querying NTP server values: {e}")
finally:
if dbh is not None:
dbh.close()
@app.route('/plot.png')
def plot_png():
dbh = psycopg.connect() dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh) engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
query = """ query = """
select time_bucket('5 minutes', time) as bucket, select time_bucket('5 minutes', time) as bucket,
device, attributes->>'Label' as device,
avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp, avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp,
max(cast(values->'stratum'->>'value' as int)) as stratum max(cast(values->'stratum'->>'value' as int)) as stratum
from measurements from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'TSM' and attributes->>'Label' = 'david' application = 'SNMP' and attributes->>'Label' IN ('harrison', 'david')
group by bucket, device group by bucket, attributes->>'Label'
order by bucket, device order by bucket, attributes->>'Label'
""" """
df = pd.read_sql(query, con=engine) df = pd.read_sql(query, con=engine)
df['rootdisp'] = df['rootdisp'] / 1e6
fig, ax1 = plt.subplots()
# Extract date for title
ax1.plot(df['bucket'], df['rootdisp'], 'r-', label='Root Dispersion') plot_date = df['bucket'].dt.date.iloc[0] if not df.empty else "Unknown Date"
ax1.set_xlabel('Time')
ax1.set_ylabel('Root Dispersion (ms)', color='r') # Create figure with two side-by-side subplots
ax1.tick_params(axis='y', labelcolor='r') fig, axes = plt.subplots(1, 2, figsize=(15, 5), sharex=True)
ax2 = ax1.twinx() for i, device in enumerate(['harrison', 'david']):
ax2.plot(df['bucket'], df['stratum'], 'b-', label='Stratum') ax1 = axes[i]
ax2.set_ylabel('Stratum', color='b') ax2 = ax1.twinx()
ax2.tick_params(axis='y', labelcolor='b')
ax2.set_yticks(range(int(df['stratum'].min()), int(df['stratum'].max()) + 1)) device_df = df[df['device'] == device]
fig.suptitle('NTP Server Numbers') ax1.plot(device_df['bucket'], device_df['rootdisp'], 'r-', label='Root Dispersion')
ax1.set_xlabel('Time')
ax1.set_ylabel('Root Dispersion (ms)', color='r')
ax1.tick_params(axis='y', labelcolor='r')
ax2.plot(device_df['bucket'], device_df['stratum'], 'b-', label='Stratum')
ax2.set_ylabel('Stratum', color='b')
ax2.tick_params(axis='y', labelcolor='b')
ax2.set_yticks(range(int(device_df['stratum'].min()), int(device_df['stratum'].max()) + 1))
ax1.set_title(f'{device.capitalize()}')
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
fig.autofmt_xdate(rotation=45)
fig.suptitle(f'Stratum and Root Dispersion - {plot_date}')
fig.tight_layout() fig.tight_layout()
img_io = io.BytesIO() img_io = io.BytesIO()
plt.savefig(img_io, format='png') plt.savefig(img_io, format='png')
img_io.seek(0) img_io.seek(0)
plt.close(fig) plt.close(fig)
return Response(img_io, mimetype='image/png') return Response(img_io, mimetype='image/png')
@app.route('/ntp/packets-load.png')
def packets_load_png():
dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
query = """
select time_bucket('5 minutes', time) as bucket,
attributes->>'Label' as device,
avg(cast(values->'load1'->>'value' as float)) as load,
avg(cast(values->'processed-pkts'->>'value' as int)) as packets
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'SNMP' and attributes->>'Label' IN ('harrison', 'david')
group by bucket, attributes->>'Label'
order by bucket, attributes->>'Label'
"""
df = pd.read_sql(query, con=engine)
# Extract date for title
plot_date = df['bucket'].dt.date.iloc[0] if not df.empty else "Unknown Date"
# Create figure with two side-by-side subplots
fig, axes = plt.subplots(1, 2, figsize=(15, 5), sharex=True)
for i, device in enumerate(['harrison', 'david']):
ax1 = axes[i]
ax2 = ax1.twinx()
device_df = df[df['device'] == device]
ax1.plot(device_df['bucket'], device_df['load'], 'r-', label='CPU Load')
ax1.set_xlabel('Time')
ax1.set_ylabel('Load', color='r')
ax1.tick_params(axis='y', labelcolor='r')
ax2.plot(device_df['bucket'], device_df['packets'], 'b-', label='Processed Packets')
ax2.set_ylabel('Packets', color='b')
ax2.tick_params(axis='y', labelcolor='b')
ax1.set_title(f'{device.capitalize()}')
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
fig.autofmt_xdate(rotation=45)
fig.suptitle(f'CPU Load and Processed Packets - {plot_date}')
fig.tight_layout()
img_io = io.BytesIO()
plt.savefig(img_io, format='png')
img_io.seek(0)
plt.close(fig)
return Response(img_io, mimetype='image/png')

View File

@@ -12,25 +12,17 @@ from app import app
from app import oidc from app import oidc
@app.route('/pvstats') @app.route('/')
@oidc.require_login @oidc.require_login
def pvstats(): def pvstats():
try: try:
stepX_time = time.time()
dbh = psycopg.connect() dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh) engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
step0_time = time.time()
df = pd.read_sql("SELECT month, cast(year AS varchar), current_energy AS value FROM pv_energy_by_month", con=engine) df = pd.read_sql("SELECT month, cast(year AS varchar), current_energy AS value FROM pv_energy_by_month", con=engine)
step1_time = time.time()
duration1 = step1_time - step0_time
logger.info(f"{duration1=}")
fig_1 = px.bar(df, x='month', y='value', color='year', barmode='group') fig_1 = px.bar(df, x='month', y='value', color='year', barmode='group')
step2_time = time.time()
duration2 = step2_time - step1_time
logger.info(f"{duration2=}")
fig_1.update_layout( fig_1.update_layout(
title=f"Jahreswerte Exportierte Energie {duration1:.3f}, {duration2:.3f}", title=f"Jahreswerte Exportierte Energie PV-Anlage",
xaxis_title="", xaxis_title="",
yaxis_title="", yaxis_title="",
legend_title="Jahr", legend_title="Jahr",
@@ -43,74 +35,34 @@ def pvstats():
) )
graph_html_1 = fig_1.to_html(full_html=False, default_height='30%') graph_html_1 = fig_1.to_html(full_html=False, default_height='30%')
step3_time = time.time() df = pd.read_sql("SELECT month, cast(year AS varchar), current_energy AS value FROM car_energy_by_month", con=engine)
df = pd.read_sql("SELECT time_bucket('5 minutes', time) AS bucket, AVG(power) AS avg_power FROM pv_power_v WHERE time >= date_trunc('day', now()) - '1 day'::interval AND time < date_trunc('day', now()) GROUP BY bucket ORDER BY bucket", con=engine) fig_2 = px.bar(df, x='month', y='value', color='year', barmode='group')
step4_time = time.time()
duration3 = step4_time - step3_time
logger.info(f"{duration3=}")
fig_2 = px.line(df, x='bucket', y='avg_power')
step5_time = time.time()
duration4 = step5_time - step4_time
logger.info(f"{duration4=}")
fig_2.update_layout( fig_2.update_layout(
title=f"Jahreswerte Verbrauch Elektroauto",
xaxis_title="", xaxis_title="",
yaxis_title="", yaxis_title="",
title=f"Export gestern {duration3:.3f}, {duration4:.3f}", legend_title="Jahr",
yaxis=dict(ticksuffix=" W") xaxis=dict(
tickmode="array",
tickvals=list(range(1, 13)), # Monate 112
ticktext=["Jan", "Feb", "Mär", "Apr", "Mai", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Dez"]
),
yaxis=dict(ticksuffix=" kWh")
) )
graph_html_2 = fig_2.to_html(full_html=False, default_height='30%') graph_html_2 = fig_2.to_html(full_html=False, default_height='30%')
step6_time = time.time()
df = pd.read_sql("SELECT time_bucket('5 minutes', time) AS bucket, AVG(power) AS avg_power FROM pv_power_v WHERE time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval GROUP BY bucket ORDER BY bucket", con=engine)
step7_time = time.time()
duration5 = step7_time - step6_time
logger.info(f"{duration5=}")
fig_3 = px.line(df, x='bucket', y='avg_power')
step8_time = time.time()
duration6 = step8_time - step7_time
logger.info(f"{duration6=}")
fig_3.update_layout(
xaxis_title="",
yaxis_title="",
title=f"Export heute {duration5:.3f}, {duration6:.3f}",
yaxis=dict(ticksuffix=" W")
)
graph_html_3 = fig_3.to_html(full_html=False, default_height='30%')
stepZ_time = time.time()
duration7 = stepZ_time - stepX_time
logger.info(f"{duration7=}")
return render_template_string(f""" return render_template_string(f"""
<html> <html>
<head> <head>
<title>Jahreswerte PV-Energie</title> <title>Jahreswerte PV und Auto</title>
</head> </head>
<body> <body>
{graph_html_1} {graph_html_1}
{graph_html_2} {graph_html_2}
{graph_html_3}
<div style="height:9vh; background-color:lightgrey; font-family: Courier, Consolas, monospace;">
<table style="border-collapse: collapse;">
<style>
td.smallsep {{ padding-right: 10px }}
td.largesep {{ padding-right: 30px }}
</style>
<tr>
<td class="smallsep">Query 1:</td><td class="largesep"> {duration1:.3f} s</td><td class="smallsep">Graph 1:</td><td> {duration2:.3f} s</td>
</tr><tr>
<td class="smallsep">Query 2:</td><td class="largesep"> {duration3:.3f} s</td><td class="smallsep">Graph 2:</td><td> {duration4:.3f} s</td>
</tr><tr>
<td class="smallsep">Query 3:</td><td class="largesep"> {duration5:.3f} s</td><td class="smallsep">Graph 3:</td><td> {duration6:.3f} s</td>
</tr><tr>
<td class="smallsep">Total:</td><td> {duration7:.3f} s</td><td></td><td></td>
</tr>
</table>
</div>
</body> </body>
</html> </html>
""") """)
except Exception as e: except Exception as e:
raise Exception(f"Error when querying energy export values: {e}") raise Exception(f"Error when querying energy values: {e}")
finally: finally:
if dbh is not None: if dbh is not None:
dbh.close() dbh.close()

View File

@@ -5,10 +5,6 @@ from app import app
from app import oidc from app import oidc
@app.route('/')
def index():
abort(404)
@app.route('/generate_image') @app.route('/generate_image')
def generate_image(): def generate_image():
img = Image.new('RGB', (200, 100), color=(255, 255, 255)) img = Image.new('RGB', (200, 100), color=(255, 255, 255))

View File

@@ -10,7 +10,7 @@ import ntp_routes
if __name__ == '__main__': if __name__ == '__main__':
app.run(port=8080) app.run(host='0.0.0.0', port=8080)
else: else:
exposed_app = ProxyFix(app, x_for=1, x_host=1) exposed_app = ProxyFix(app, x_for=1, x_host=1)