Compare commits

...

7 Commits
0.5.2 ... main

Author SHA1 Message Date
2d48e87893 ntp graphs
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-13 10:50:11 +01:00
6c1a62e09d nicer graph
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
2025-03-12 21:13:24 +01:00
a5d3b13629 changes
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
2025-03-12 20:49:44 +01:00
83f71b3f81 fix, 3
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-12 16:22:07 +01:00
730168ab61 fix, 2
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-12 16:18:28 +01:00
8bef6d676c fix
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-12 16:14:36 +01:00
813265f8ee forgotten requirement, 2
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-12 16:10:28 +01:00
5 changed files with 114 additions and 148 deletions

View File

@ -7,22 +7,7 @@ IMAGE_NAME=numberimage
docker build --progress=plain -t $IMAGE_NAME .
SECRETS=`mktemp`
gpg --decrypt --passphrase $GPG_PASSPHRASE --yes --batch --output $SECRETS ./deployment/secrets.asc
. $SECRETS
rm $SECRETS
DB_NAMESPACE=database1
DB_DEPLOYNAME=database
REDIS_NAMESPACE=redis
REDIS_SERVICE_NAME=redis
PGHOST=`kubectl get services $DB_DEPLOYNAME -n $DB_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDISHOST=`kubectl get services $REDIS_SERVICE_NAME -n $REDIS_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDIS_URL=redis://$REDISHOST:6379/4
. load-debug-env
docker run \
-it \

15
load-debug-env Normal file
View File

@ -0,0 +1,15 @@
SECRETS=`mktemp`
gpg --decrypt --passphrase $GPG_PASSPHRASE --yes --batch --output $SECRETS ./deployment/secrets.asc
. $SECRETS
rm $SECRETS
DB_NAMESPACE=database1
DB_DEPLOYNAME=database
REDIS_NAMESPACE=redis
REDIS_SERVICE_NAME=redis
PGHOST=`kubectl get services $DB_DEPLOYNAME -n $DB_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDISHOST=`kubectl get services $REDIS_SERVICE_NAME -n $REDIS_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDIS_URL=redis://$REDISHOST:6379/4

View File

@ -1,163 +1,129 @@
from flask import Flask, session, g, render_template_string
from flask import Flask, session, g, render_template_string, Response
from loguru import logger
import json
import plotly.express as px
import plotly.graph_objects as po
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.ticker import ScalarFormatter
import pandas as pd
import psycopg
import sqlalchemy
import time
import io
from app import app
from app import oidc
@app.route('/ntpserver')
def ntpserver():
try:
dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
query = """
select time_bucket('5 minutes', time) as bucket,
device,
avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp,
max(cast(values->'stratum'->>'value' as int)) as stratum
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'TSM' and attributes->>'Label' = 'david'
group by bucket, device
order by bucket, device
"""
df = pd.read_sql(query, con=engine)
fig = po.Figure()
fig.add_trace(po.Scatter(x=df['bucket'], y=df['rootdisp'], mode='lines', name='Root Dispersion', yaxis='y1', line=dict(color='red')))
fig.add_trace(po.Scatter(x=df['bucket'], y=df['stratum'], mode='lines', name='Stratum', yaxis='y2', line=dict(color='blue')))
fig.update_layout(
title='NTP Server Numbers',
# Linke Y-Achse
yaxis=dict(
title='Root Dispersion',
ticksuffix=' ms'
),
# Rechte Y-Achse
yaxis2=dict(
title='Stratum',
overlaying='y', # Legt die zweite Y-Achse über die erste
side='right', # Setzt sie auf die rechte Seite
tickmode='linear', # Stellt sicher, dass die Ticks in festen Intervallen sind
dtick=1, # Zeigt nur ganzzahlige Ticks
),
legend=dict(x=0.05, y=1) # Position der Legende
)
graph_html_1 = fig.to_html(full_html=False, default_height='30%')
query = """
select time_bucket('5 minutes', time) as bucket,
device,
avg(cast(values->'time-req-pkts'->>'value' as float)) as packets
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'SNMP' and attributes->>'Label' = 'david'
group by bucket, device
order by bucket, device
"""
df = pd.read_sql(query, con=engine)
fig_2 = px.line(df, x='bucket', y='packets')
fig_2.update_layout(
xaxis_title="",
yaxis_title="",
yaxis_ticksuffix="p/s",
title=f"Time Requests"
)
graph_html_2 = fig_2.to_html(full_html=False, default_height='30%')
query = """
select time_bucket('5 minutes', time) as bucket,
device,
avg(cast(values->'load1'->>'value' as float)) as loadaverage1min
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'SNMP' and attributes->>'Label' = 'david'
group by bucket, device
order by bucket, device
"""
df = pd.read_sql(query, con=engine)
fig_3 = px.line(df, x='bucket', y='loadaverage1min')
fig_3.update_layout(
xaxis_title="",
yaxis_title="",
title=f"CPU Load"
)
graph_html_3 = fig_3.to_html(full_html=False, default_height='30%')
return render_template_string(f"""
<html>
<head>
<title>NTP Server Numbers</title>
</head>
<body>
{graph_html_1}
{graph_html_2}
{graph_html_3}
</body>
</html>
""")
except Exception as e:
raise Exception(f"Error when querying NTP server values: {e}")
finally:
if dbh is not None:
dbh.close()
def get_dataframe():
@app.route('/plot.png')
def plot_png():
@app.route('/ntp/stratum-rootdisp.png')
def stratum_rootdisp_png():
dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
query = """
select time_bucket('5 minutes', time) as bucket,
device,
attributes->>'Label' as device,
avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp,
max(cast(values->'stratum'->>'value' as int)) as stratum
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'TSM' and attributes->>'Label' = 'david'
group by bucket, device
order by bucket, device
application = 'SNMP' and attributes->>'Label' IN ('harrison', 'david')
group by bucket, attributes->>'Label'
order by bucket, attributes->>'Label'
"""
df = pd.read_sql(query, con=engine)
df['rootdisp'] = df['rootdisp'] / 1e6
fig, ax1 = plt.subplots()
ax1.plot(df['bucket'], df['rootdisp'], 'r-', label='Root Dispersion')
ax1.set_xlabel('Time')
ax1.set_ylabel('Root Dispersion (ms)', color='r')
ax1.tick_params(axis='y', labelcolor='r')
ax2 = ax1.twinx()
ax2.plot(df['bucket'], df['stratum'], 'b-', label='Stratum')
ax2.set_ylabel('Stratum', color='b')
ax2.tick_params(axis='y', labelcolor='b')
ax2.set_yticks(range(int(df['stratum'].min()), int(df['stratum'].max()) + 1))
fig.suptitle('NTP Server Numbers')
# Extract date for title
plot_date = df['bucket'].dt.date.iloc[0] if not df.empty else "Unknown Date"
# Create figure with two side-by-side subplots
fig, axes = plt.subplots(1, 2, figsize=(15, 5), sharex=True)
for i, device in enumerate(['harrison', 'david']):
ax1 = axes[i]
ax2 = ax1.twinx()
device_df = df[df['device'] == device]
ax1.plot(device_df['bucket'], device_df['rootdisp'], 'r-', label='Root Dispersion')
ax1.set_xlabel('Time')
ax1.set_ylabel('Root Dispersion (ms)', color='r')
ax1.tick_params(axis='y', labelcolor='r')
ax2.plot(device_df['bucket'], device_df['stratum'], 'b-', label='Stratum')
ax2.set_ylabel('Stratum', color='b')
ax2.tick_params(axis='y', labelcolor='b')
ax2.set_yticks(range(int(device_df['stratum'].min()), int(device_df['stratum'].max()) + 1))
ax1.set_title(f'{device.capitalize()}')
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
fig.autofmt_xdate(rotation=45)
fig.suptitle(f'Stratum and Root Dispersion - {plot_date}')
fig.tight_layout()
img_io = io.BytesIO()
plt.savefig(img_io, format='png')
img_io.seek(0)
plt.close(fig)
return Response(img_io, mimetype='image/png')
@app.route('/ntp/packets-load.png')
def packets_load_png():
dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
query = """
select time_bucket('5 minutes', time) as bucket,
attributes->>'Label' as device,
avg(cast(values->'load1'->>'value' as float)) as load,
avg(cast(values->'processed-pkts'->>'value' as int)) as packets
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'SNMP' and attributes->>'Label' IN ('harrison', 'david')
group by bucket, attributes->>'Label'
order by bucket, attributes->>'Label'
"""
df = pd.read_sql(query, con=engine)
# Extract date for title
plot_date = df['bucket'].dt.date.iloc[0] if not df.empty else "Unknown Date"
# Create figure with two side-by-side subplots
fig, axes = plt.subplots(1, 2, figsize=(15, 5), sharex=True)
for i, device in enumerate(['harrison', 'david']):
ax1 = axes[i]
ax2 = ax1.twinx()
device_df = df[df['device'] == device]
ax1.plot(device_df['bucket'], device_df['load'], 'r-', label='CPU Load')
ax1.set_xlabel('Time')
ax1.set_ylabel('Load', color='r')
ax1.tick_params(axis='y', labelcolor='r')
ax2.plot(device_df['bucket'], device_df['packets'], 'b-', label='Processed Packets')
ax2.set_ylabel('Packets', color='b')
ax2.tick_params(axis='y', labelcolor='b')
ax1.set_title(f'{device.capitalize()}')
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
fig.autofmt_xdate(rotation=45)
fig.suptitle(f'CPU Load and Processed Packets - {plot_date}')
fig.tight_layout()
img_io = io.BytesIO()
plt.savefig(img_io, format='png')
img_io.seek(0)
plt.close(fig)
return Response(img_io, mimetype='image/png')

View File

@ -39,5 +39,5 @@ urllib3==2.3.0
Werkzeug==3.1.3
zipp==3.21.0
pillow==11.1.0
matplotlib=3.10.1
matplotlib==3.10.1

View File

@ -10,7 +10,7 @@ import ntp_routes
if __name__ == '__main__':
app.run(port=8080)
app.run(host='0.0.0.0', port=8080)
else:
exposed_app = ProxyFix(app, x_for=1, x_host=1)