|
|
|
@ -1,120 +1,129 @@
|
|
|
|
|
from flask import Flask, session, g, render_template_string
|
|
|
|
|
from flask import Flask, session, g, render_template_string, Response
|
|
|
|
|
from loguru import logger
|
|
|
|
|
import json
|
|
|
|
|
import plotly.express as px
|
|
|
|
|
import plotly.graph_objects as po
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
import matplotlib.dates as mdates
|
|
|
|
|
from matplotlib.ticker import ScalarFormatter
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import psycopg
|
|
|
|
|
import sqlalchemy
|
|
|
|
|
import time
|
|
|
|
|
import io
|
|
|
|
|
|
|
|
|
|
from app import app
|
|
|
|
|
from app import oidc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.route('/ntpserver')
|
|
|
|
|
def ntpserver():
|
|
|
|
|
try:
|
|
|
|
|
dbh = psycopg.connect()
|
|
|
|
|
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
|
|
|
|
|
|
|
|
|
|
query = """
|
|
|
|
|
select time_bucket('5 minutes', time) as bucket,
|
|
|
|
|
device,
|
|
|
|
|
avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp,
|
|
|
|
|
max(cast(values->'stratum'->>'value' as int)) as stratum
|
|
|
|
|
from measurements
|
|
|
|
|
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
|
|
|
|
|
application = 'TSM' and attributes->>'Label' = 'david'
|
|
|
|
|
group by bucket, device
|
|
|
|
|
order by bucket, device
|
|
|
|
|
"""
|
|
|
|
|
@app.route('/ntp/stratum-rootdisp.png')
|
|
|
|
|
def stratum_rootdisp_png():
|
|
|
|
|
dbh = psycopg.connect()
|
|
|
|
|
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
|
|
|
|
|
query = """
|
|
|
|
|
select time_bucket('5 minutes', time) as bucket,
|
|
|
|
|
attributes->>'Label' as device,
|
|
|
|
|
avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp,
|
|
|
|
|
max(cast(values->'stratum'->>'value' as int)) as stratum
|
|
|
|
|
from measurements
|
|
|
|
|
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
|
|
|
|
|
application = 'SNMP' and attributes->>'Label' IN ('harrison', 'david')
|
|
|
|
|
group by bucket, attributes->>'Label'
|
|
|
|
|
order by bucket, attributes->>'Label'
|
|
|
|
|
"""
|
|
|
|
|
df = pd.read_sql(query, con=engine)
|
|
|
|
|
|
|
|
|
|
df['rootdisp'] = df['rootdisp'] / 1e6
|
|
|
|
|
|
|
|
|
|
df = pd.read_sql(query, con=engine)
|
|
|
|
|
|
|
|
|
|
# Extract date for title
|
|
|
|
|
plot_date = df['bucket'].dt.date.iloc[0] if not df.empty else "Unknown Date"
|
|
|
|
|
|
|
|
|
|
# Create figure with two side-by-side subplots
|
|
|
|
|
fig, axes = plt.subplots(1, 2, figsize=(15, 5), sharex=True)
|
|
|
|
|
|
|
|
|
|
for i, device in enumerate(['harrison', 'david']):
|
|
|
|
|
ax1 = axes[i]
|
|
|
|
|
ax2 = ax1.twinx()
|
|
|
|
|
|
|
|
|
|
device_df = df[df['device'] == device]
|
|
|
|
|
|
|
|
|
|
ax1.plot(device_df['bucket'], device_df['rootdisp'], 'r-', label='Root Dispersion')
|
|
|
|
|
ax1.set_xlabel('Time')
|
|
|
|
|
ax1.set_ylabel('Root Dispersion (ms)', color='r')
|
|
|
|
|
ax1.tick_params(axis='y', labelcolor='r')
|
|
|
|
|
|
|
|
|
|
ax2.plot(device_df['bucket'], device_df['stratum'], 'b-', label='Stratum')
|
|
|
|
|
ax2.set_ylabel('Stratum', color='b')
|
|
|
|
|
ax2.tick_params(axis='y', labelcolor='b')
|
|
|
|
|
ax2.set_yticks(range(int(device_df['stratum'].min()), int(device_df['stratum'].max()) + 1))
|
|
|
|
|
|
|
|
|
|
ax1.set_title(f'{device.capitalize()}')
|
|
|
|
|
|
|
|
|
|
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
|
|
|
|
|
fig.autofmt_xdate(rotation=45)
|
|
|
|
|
|
|
|
|
|
fig.suptitle(f'Stratum and Root Dispersion - {plot_date}')
|
|
|
|
|
fig.tight_layout()
|
|
|
|
|
|
|
|
|
|
img_io = io.BytesIO()
|
|
|
|
|
plt.savefig(img_io, format='png')
|
|
|
|
|
img_io.seek(0)
|
|
|
|
|
plt.close(fig)
|
|
|
|
|
|
|
|
|
|
fig = po.Figure()
|
|
|
|
|
fig.add_trace(po.Scatter(x=df['bucket'], y=df['rootdisp'], mode='lines', name='Root Dispersion', yaxis='y1', line=dict(color='red')))
|
|
|
|
|
fig.add_trace(po.Scatter(x=df['bucket'], y=df['stratum'], mode='lines', name='Stratum', yaxis='y2', line=dict(color='blue')))
|
|
|
|
|
|
|
|
|
|
fig.update_layout(
|
|
|
|
|
title='NTP Server Numbers',
|
|
|
|
|
|
|
|
|
|
# Linke Y-Achse
|
|
|
|
|
yaxis=dict(
|
|
|
|
|
title='Root Dispersion',
|
|
|
|
|
ticksuffix=' ms'
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
# Rechte Y-Achse
|
|
|
|
|
yaxis2=dict(
|
|
|
|
|
title='Stratum',
|
|
|
|
|
overlaying='y', # Legt die zweite Y-Achse über die erste
|
|
|
|
|
side='right', # Setzt sie auf die rechte Seite
|
|
|
|
|
tickmode='linear', # Stellt sicher, dass die Ticks in festen Intervallen sind
|
|
|
|
|
dtick=1, # Zeigt nur ganzzahlige Ticks
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
legend=dict(x=0.05, y=1) # Position der Legende
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
graph_html_1 = fig.to_html(full_html=False, default_height='30%')
|
|
|
|
|
|
|
|
|
|
query = """
|
|
|
|
|
select time_bucket('5 minutes', time) as bucket,
|
|
|
|
|
device,
|
|
|
|
|
avg(cast(values->'time-req-pkts'->>'value' as float)) as packets
|
|
|
|
|
from measurements
|
|
|
|
|
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
|
|
|
|
|
application = 'SNMP' and attributes->>'Label' = 'david'
|
|
|
|
|
group by bucket, device
|
|
|
|
|
order by bucket, device
|
|
|
|
|
"""
|
|
|
|
|
df = pd.read_sql(query, con=engine)
|
|
|
|
|
fig_2 = px.line(df, x='bucket', y='packets')
|
|
|
|
|
fig_2.update_layout(
|
|
|
|
|
xaxis_title="",
|
|
|
|
|
yaxis_title="",
|
|
|
|
|
yaxis_ticksuffix="p/s",
|
|
|
|
|
title=f"Time Requests"
|
|
|
|
|
)
|
|
|
|
|
graph_html_2 = fig_2.to_html(full_html=False, default_height='30%')
|
|
|
|
|
|
|
|
|
|
query = """
|
|
|
|
|
select time_bucket('5 minutes', time) as bucket,
|
|
|
|
|
device,
|
|
|
|
|
avg(cast(values->'load1'->>'value' as float)) as loadaverage1min
|
|
|
|
|
from measurements
|
|
|
|
|
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
|
|
|
|
|
application = 'SNMP' and attributes->>'Label' = 'david'
|
|
|
|
|
group by bucket, device
|
|
|
|
|
order by bucket, device
|
|
|
|
|
"""
|
|
|
|
|
df = pd.read_sql(query, con=engine)
|
|
|
|
|
fig_3 = px.line(df, x='bucket', y='loadaverage1min')
|
|
|
|
|
fig_3.update_layout(
|
|
|
|
|
xaxis_title="",
|
|
|
|
|
yaxis_title="",
|
|
|
|
|
title=f"CPU Load"
|
|
|
|
|
)
|
|
|
|
|
graph_html_3 = fig_3.to_html(full_html=False, default_height='30%')
|
|
|
|
|
|
|
|
|
|
return render_template_string(f"""
|
|
|
|
|
<html>
|
|
|
|
|
<head>
|
|
|
|
|
<title>NTP Server Numbers</title>
|
|
|
|
|
</head>
|
|
|
|
|
<body>
|
|
|
|
|
{graph_html_1}
|
|
|
|
|
{graph_html_2}
|
|
|
|
|
{graph_html_3}
|
|
|
|
|
</body>
|
|
|
|
|
</html>
|
|
|
|
|
""")
|
|
|
|
|
except Exception as e:
|
|
|
|
|
raise Exception(f"Error when querying NTP server values: {e}")
|
|
|
|
|
finally:
|
|
|
|
|
if dbh is not None:
|
|
|
|
|
dbh.close()
|
|
|
|
|
return Response(img_io, mimetype='image/png')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.route('/ntp/packets-load.png')
|
|
|
|
|
def packets_load_png():
|
|
|
|
|
dbh = psycopg.connect()
|
|
|
|
|
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
|
|
|
|
|
query = """
|
|
|
|
|
select time_bucket('5 minutes', time) as bucket,
|
|
|
|
|
attributes->>'Label' as device,
|
|
|
|
|
avg(cast(values->'load1'->>'value' as float)) as load,
|
|
|
|
|
avg(cast(values->'processed-pkts'->>'value' as int)) as packets
|
|
|
|
|
from measurements
|
|
|
|
|
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
|
|
|
|
|
application = 'SNMP' and attributes->>'Label' IN ('harrison', 'david')
|
|
|
|
|
group by bucket, attributes->>'Label'
|
|
|
|
|
order by bucket, attributes->>'Label'
|
|
|
|
|
"""
|
|
|
|
|
df = pd.read_sql(query, con=engine)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Extract date for title
|
|
|
|
|
plot_date = df['bucket'].dt.date.iloc[0] if not df.empty else "Unknown Date"
|
|
|
|
|
|
|
|
|
|
# Create figure with two side-by-side subplots
|
|
|
|
|
fig, axes = plt.subplots(1, 2, figsize=(15, 5), sharex=True)
|
|
|
|
|
|
|
|
|
|
for i, device in enumerate(['harrison', 'david']):
|
|
|
|
|
ax1 = axes[i]
|
|
|
|
|
ax2 = ax1.twinx()
|
|
|
|
|
|
|
|
|
|
device_df = df[df['device'] == device]
|
|
|
|
|
|
|
|
|
|
ax1.plot(device_df['bucket'], device_df['load'], 'r-', label='CPU Load')
|
|
|
|
|
ax1.set_xlabel('Time')
|
|
|
|
|
ax1.set_ylabel('Load', color='r')
|
|
|
|
|
ax1.tick_params(axis='y', labelcolor='r')
|
|
|
|
|
|
|
|
|
|
ax2.plot(device_df['bucket'], device_df['packets'], 'b-', label='Processed Packets')
|
|
|
|
|
ax2.set_ylabel('Packets', color='b')
|
|
|
|
|
ax2.tick_params(axis='y', labelcolor='b')
|
|
|
|
|
|
|
|
|
|
ax1.set_title(f'{device.capitalize()}')
|
|
|
|
|
|
|
|
|
|
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
|
|
|
|
|
fig.autofmt_xdate(rotation=45)
|
|
|
|
|
|
|
|
|
|
fig.suptitle(f'CPU Load and Processed Packets - {plot_date}')
|
|
|
|
|
fig.tight_layout()
|
|
|
|
|
|
|
|
|
|
img_io = io.BytesIO()
|
|
|
|
|
plt.savefig(img_io, format='png')
|
|
|
|
|
img_io.seek(0)
|
|
|
|
|
plt.close(fig)
|
|
|
|
|
|
|
|
|
|
return Response(img_io, mimetype='image/png')
|
|
|
|
|