Compare commits

..

13 Commits
0.4.5 ... 0.7.2

Author SHA1 Message Date
cab9ed705e order by year
Some checks failed
ci/woodpecker/push/woodpecker Pipeline failed
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-12-15 18:19:38 +01:00
2faa19bc54 stats 2
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-12-15 18:09:13 +01:00
7f52839877 stats
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-12-15 18:01:49 +01:00
2d48e87893 ntp graphs
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-13 10:50:11 +01:00
6c1a62e09d nicer graph
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
2025-03-12 21:13:24 +01:00
a5d3b13629 changes
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
2025-03-12 20:49:44 +01:00
83f71b3f81 fix, 3
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-12 16:22:07 +01:00
730168ab61 fix, 2
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-12 16:18:28 +01:00
8bef6d676c fix
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-12 16:14:36 +01:00
813265f8ee forgotten requirement, 2
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-12 16:10:28 +01:00
b47070cfc2 forgotten requirement
Some checks failed
ci/woodpecker/push/woodpecker Pipeline failed
ci/woodpecker/tag/woodpecker Pipeline failed
2025-03-12 16:08:57 +01:00
92ef3e6a85 more png
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-12 16:04:34 +01:00
a63776fb3f deploy names changed
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2025-03-12 15:43:33 +01:00
10 changed files with 165 additions and 206 deletions

View File

@@ -4,15 +4,15 @@ steps:
settings:
repo: ${FORGE_NAME}/${CI_REPO}
registry:
from_secret: container_registry
tags: latest,${CI_COMMIT_SHA},${CI_COMMIT_TAG}
from_secret: local_registry
tags: latest,${CI_COMMIT_TAG}
username:
from_secret: container_registry_username
from_secret: local_username
password:
from_secret: container_registry_password
from_secret: local_password
dockerfile: Dockerfile
when:
- event: [push, tag]
- event: tag
scan:
image: quay.io/wollud1969/woodpecker-helper:0.5.1
@@ -27,7 +27,7 @@ steps:
from_secret: dtrack_api_url
commands:
- HOME=/home/`id -nu`
- TAG="${CI_COMMIT_TAG:-$CI_COMMIT_SHA}"
- TAG="${CI_COMMIT_TAG}"
- |
trivy image \
--server $TRIVY_URL \
@@ -50,7 +50,7 @@ steps:
- event: [push, tag]
deploy:
image: quay.io/wollud1969/k8s-admin-helper:0.2.1
image: quay.io/wollud1969/k8s-admin-helper:0.4.1
environment:
KUBE_CONFIG_CONTENT:
from_secret: kube_config

View File

@@ -7,22 +7,7 @@ IMAGE_NAME=numberimage
docker build --progress=plain -t $IMAGE_NAME .
SECRETS=`mktemp`
gpg --decrypt --passphrase $GPG_PASSPHRASE --yes --batch --output $SECRETS ./deployment/secrets.asc
. $SECRETS
rm $SECRETS
DB_NAMESPACE=database1
DB_DEPLOYNAME=database
REDIS_NAMESPACE=redis
REDIS_SERVICE_NAME=redis
PGHOST=`kubectl get services $DB_DEPLOYNAME -n $DB_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDISHOST=`kubectl get services $REDIS_SERVICE_NAME -n $REDIS_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDIS_URL=redis://$REDISHOST:6379/4
. load-debug-env
docker run \
-it \

View File

@@ -1,27 +1,27 @@
apiVersion: apps/v1
kind: Deployment
metadata:
name: pv-stats
name: numbers
labels:
app: pv-stats
app: numbers
annotations:
secret.reloader.stakater.com/reload: pv-stats
secret.reloader.stakater.com/reload: numbers
spec:
replicas: 1
selector:
matchLabels:
app: pv-stats
app: numbers
template:
metadata:
labels:
app: pv-stats
app: numbers
spec:
containers:
- name: pv-stats
- name: numbers
image: %IMAGE%
envFrom:
- secretRef:
name: pv-stats
name: numbers
ports:
- containerPort: 8080
protocol: TCP
@@ -29,11 +29,11 @@ spec:
apiVersion: v1
kind: Service
metadata:
name: pv-stats
name: numbers
spec:
type: ClusterIP
selector:
app: pv-stats
app: numbers
ports:
- name: http
targetPort: 8080
@@ -42,7 +42,7 @@ spec:
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: pv-stats
name: numbers
annotations:
cert-manager.io/cluster-issuer: letsencrypt-production-http
spec:
@@ -58,7 +58,7 @@ spec:
pathType: Prefix
backend:
service:
name: pv-stats
name: numbers
port:
number: 80

View File

@@ -25,7 +25,7 @@ kubectl create namespace $NAMESPACE \
# rm $SECRETS_FILE
eval "`cat secrets.asc | /usr/local/bin/decrypt-secrets.sh`"
kubectl create secret generic pv-stats \
kubectl create secret generic numbers \
--dry-run=client \
-o yaml \
--save-config \

15
load-debug-env Normal file
View File

@@ -0,0 +1,15 @@
SECRETS=`mktemp`
gpg --decrypt --passphrase $GPG_PASSPHRASE --yes --batch --output $SECRETS ./deployment/secrets.asc
. $SECRETS
rm $SECRETS
DB_NAMESPACE=database1
DB_DEPLOYNAME=database
REDIS_NAMESPACE=redis
REDIS_SERVICE_NAME=redis
PGHOST=`kubectl get services $DB_DEPLOYNAME -n $DB_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDISHOST=`kubectl get services $REDIS_SERVICE_NAME -n $REDIS_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
REDIS_URL=redis://$REDISHOST:6379/4

View File

@@ -1,120 +1,129 @@
from flask import Flask, session, g, render_template_string
from flask import Flask, session, g, render_template_string, Response
from loguru import logger
import json
import plotly.express as px
import plotly.graph_objects as po
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.ticker import ScalarFormatter
import pandas as pd
import psycopg
import sqlalchemy
import time
import io
from app import app
from app import oidc
@app.route('/ntpserver')
def ntpserver():
try:
dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
query = """
select time_bucket('5 minutes', time) as bucket,
device,
avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp,
max(cast(values->'stratum'->>'value' as int)) as stratum
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'TSM' and attributes->>'Label' = 'david'
group by bucket, device
order by bucket, device
"""
@app.route('/ntp/stratum-rootdisp.png')
def stratum_rootdisp_png():
dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
query = """
select time_bucket('5 minutes', time) as bucket,
attributes->>'Label' as device,
avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp,
max(cast(values->'stratum'->>'value' as int)) as stratum
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'SNMP' and attributes->>'Label' IN ('harrison', 'david')
group by bucket, attributes->>'Label'
order by bucket, attributes->>'Label'
"""
df = pd.read_sql(query, con=engine)
df['rootdisp'] = df['rootdisp'] / 1e6
df = pd.read_sql(query, con=engine)
# Extract date for title
plot_date = df['bucket'].dt.date.iloc[0] if not df.empty else "Unknown Date"
# Create figure with two side-by-side subplots
fig, axes = plt.subplots(1, 2, figsize=(15, 5), sharex=True)
for i, device in enumerate(['harrison', 'david']):
ax1 = axes[i]
ax2 = ax1.twinx()
device_df = df[df['device'] == device]
ax1.plot(device_df['bucket'], device_df['rootdisp'], 'r-', label='Root Dispersion')
ax1.set_xlabel('Time')
ax1.set_ylabel('Root Dispersion (ms)', color='r')
ax1.tick_params(axis='y', labelcolor='r')
ax2.plot(device_df['bucket'], device_df['stratum'], 'b-', label='Stratum')
ax2.set_ylabel('Stratum', color='b')
ax2.tick_params(axis='y', labelcolor='b')
ax2.set_yticks(range(int(device_df['stratum'].min()), int(device_df['stratum'].max()) + 1))
ax1.set_title(f'{device.capitalize()}')
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
fig.autofmt_xdate(rotation=45)
fig.suptitle(f'Stratum and Root Dispersion - {plot_date}')
fig.tight_layout()
img_io = io.BytesIO()
plt.savefig(img_io, format='png')
img_io.seek(0)
plt.close(fig)
fig = po.Figure()
fig.add_trace(po.Scatter(x=df['bucket'], y=df['rootdisp'], mode='lines', name='Root Dispersion', yaxis='y1', line=dict(color='red')))
fig.add_trace(po.Scatter(x=df['bucket'], y=df['stratum'], mode='lines', name='Stratum', yaxis='y2', line=dict(color='blue')))
fig.update_layout(
title='NTP Server Numbers',
# Linke Y-Achse
yaxis=dict(
title='Root Dispersion',
ticksuffix=' ms'
),
# Rechte Y-Achse
yaxis2=dict(
title='Stratum',
overlaying='y', # Legt die zweite Y-Achse über die erste
side='right', # Setzt sie auf die rechte Seite
tickmode='linear', # Stellt sicher, dass die Ticks in festen Intervallen sind
dtick=1, # Zeigt nur ganzzahlige Ticks
),
legend=dict(x=0.05, y=1) # Position der Legende
)
graph_html_1 = fig.to_html(full_html=False, default_height='30%')
query = """
select time_bucket('5 minutes', time) as bucket,
device,
avg(cast(values->'time-req-pkts'->>'value' as float)) as packets
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'SNMP' and attributes->>'Label' = 'david'
group by bucket, device
order by bucket, device
"""
df = pd.read_sql(query, con=engine)
fig_2 = px.line(df, x='bucket', y='packets')
fig_2.update_layout(
xaxis_title="",
yaxis_title="",
yaxis_ticksuffix="p/s",
title=f"Time Requests"
)
graph_html_2 = fig_2.to_html(full_html=False, default_height='30%')
query = """
select time_bucket('5 minutes', time) as bucket,
device,
avg(cast(values->'load1'->>'value' as float)) as loadaverage1min
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'SNMP' and attributes->>'Label' = 'david'
group by bucket, device
order by bucket, device
"""
df = pd.read_sql(query, con=engine)
fig_3 = px.line(df, x='bucket', y='loadaverage1min')
fig_3.update_layout(
xaxis_title="",
yaxis_title="",
title=f"CPU Load"
)
graph_html_3 = fig_3.to_html(full_html=False, default_height='30%')
return render_template_string(f"""
<html>
<head>
<title>NTP Server Numbers</title>
</head>
<body>
{graph_html_1}
{graph_html_2}
{graph_html_3}
</body>
</html>
""")
except Exception as e:
raise Exception(f"Error when querying NTP server values: {e}")
finally:
if dbh is not None:
dbh.close()
return Response(img_io, mimetype='image/png')
@app.route('/ntp/packets-load.png')
def packets_load_png():
dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
query = """
select time_bucket('5 minutes', time) as bucket,
attributes->>'Label' as device,
avg(cast(values->'load1'->>'value' as float)) as load,
avg(cast(values->'processed-pkts'->>'value' as int)) as packets
from measurements
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
application = 'SNMP' and attributes->>'Label' IN ('harrison', 'david')
group by bucket, attributes->>'Label'
order by bucket, attributes->>'Label'
"""
df = pd.read_sql(query, con=engine)
# Extract date for title
plot_date = df['bucket'].dt.date.iloc[0] if not df.empty else "Unknown Date"
# Create figure with two side-by-side subplots
fig, axes = plt.subplots(1, 2, figsize=(15, 5), sharex=True)
for i, device in enumerate(['harrison', 'david']):
ax1 = axes[i]
ax2 = ax1.twinx()
device_df = df[df['device'] == device]
ax1.plot(device_df['bucket'], device_df['load'], 'r-', label='CPU Load')
ax1.set_xlabel('Time')
ax1.set_ylabel('Load', color='r')
ax1.tick_params(axis='y', labelcolor='r')
ax2.plot(device_df['bucket'], device_df['packets'], 'b-', label='Processed Packets')
ax2.set_ylabel('Packets', color='b')
ax2.tick_params(axis='y', labelcolor='b')
ax1.set_title(f'{device.capitalize()}')
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
fig.autofmt_xdate(rotation=45)
fig.suptitle(f'CPU Load and Processed Packets - {plot_date}')
fig.tight_layout()
img_io = io.BytesIO()
plt.savefig(img_io, format='png')
img_io.seek(0)
plt.close(fig)
return Response(img_io, mimetype='image/png')

View File

@@ -12,25 +12,17 @@ from app import app
from app import oidc
@app.route('/pvstats')
@app.route('/')
@oidc.require_login
def pvstats():
try:
stepX_time = time.time()
dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
step0_time = time.time()
df = pd.read_sql("SELECT month, cast(year AS varchar), current_energy AS value FROM pv_energy_by_month", con=engine)
step1_time = time.time()
duration1 = step1_time - step0_time
logger.info(f"{duration1=}")
df = pd.read_sql("SELECT month, cast(year AS varchar), current_energy AS value FROM pv_energy_by_month ORDER BY year, month", con=engine)
fig_1 = px.bar(df, x='month', y='value', color='year', barmode='group')
step2_time = time.time()
duration2 = step2_time - step1_time
logger.info(f"{duration2=}")
fig_1.update_layout(
title=f"Jahreswerte Exportierte Energie {duration1:.3f}, {duration2:.3f}",
title=f"Jahreswerte Exportierte Energie PV-Anlage",
xaxis_title="",
yaxis_title="",
legend_title="Jahr",
@@ -43,74 +35,34 @@ def pvstats():
)
graph_html_1 = fig_1.to_html(full_html=False, default_height='30%')
step3_time = time.time()
df = pd.read_sql("SELECT time_bucket('5 minutes', time) AS bucket, AVG(power) AS avg_power FROM pv_power_v WHERE time >= date_trunc('day', now()) - '1 day'::interval AND time < date_trunc('day', now()) GROUP BY bucket ORDER BY bucket", con=engine)
step4_time = time.time()
duration3 = step4_time - step3_time
logger.info(f"{duration3=}")
fig_2 = px.line(df, x='bucket', y='avg_power')
step5_time = time.time()
duration4 = step5_time - step4_time
logger.info(f"{duration4=}")
df = pd.read_sql("SELECT month, cast(year AS varchar), current_energy AS value FROM car_energy_by_month ORDER BY year, month", con=engine)
fig_2 = px.bar(df, x='month', y='value', color='year', barmode='group')
fig_2.update_layout(
title=f"Jahreswerte Verbrauch Elektroauto",
xaxis_title="",
yaxis_title="",
title=f"Export gestern {duration3:.3f}, {duration4:.3f}",
yaxis=dict(ticksuffix=" W")
legend_title="Jahr",
xaxis=dict(
tickmode="array",
tickvals=list(range(1, 13)), # Monate 112
ticktext=["Jan", "Feb", "Mär", "Apr", "Mai", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Dez"]
),
yaxis=dict(ticksuffix=" kWh")
)
graph_html_2 = fig_2.to_html(full_html=False, default_height='30%')
step6_time = time.time()
df = pd.read_sql("SELECT time_bucket('5 minutes', time) AS bucket, AVG(power) AS avg_power FROM pv_power_v WHERE time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval GROUP BY bucket ORDER BY bucket", con=engine)
step7_time = time.time()
duration5 = step7_time - step6_time
logger.info(f"{duration5=}")
fig_3 = px.line(df, x='bucket', y='avg_power')
step8_time = time.time()
duration6 = step8_time - step7_time
logger.info(f"{duration6=}")
fig_3.update_layout(
xaxis_title="",
yaxis_title="",
title=f"Export heute {duration5:.3f}, {duration6:.3f}",
yaxis=dict(ticksuffix=" W")
)
graph_html_3 = fig_3.to_html(full_html=False, default_height='30%')
stepZ_time = time.time()
duration7 = stepZ_time - stepX_time
logger.info(f"{duration7=}")
return render_template_string(f"""
<html>
<head>
<title>Jahreswerte PV-Energie</title>
<title>Jahreswerte PV und Auto</title>
</head>
<body>
{graph_html_1}
{graph_html_2}
{graph_html_3}
<div style="height:9vh; background-color:lightgrey; font-family: Courier, Consolas, monospace;">
<table style="border-collapse: collapse;">
<style>
td.smallsep {{ padding-right: 10px }}
td.largesep {{ padding-right: 30px }}
</style>
<tr>
<td class="smallsep">Query 1:</td><td class="largesep"> {duration1:.3f} s</td><td class="smallsep">Graph 1:</td><td> {duration2:.3f} s</td>
</tr><tr>
<td class="smallsep">Query 2:</td><td class="largesep"> {duration3:.3f} s</td><td class="smallsep">Graph 2:</td><td> {duration4:.3f} s</td>
</tr><tr>
<td class="smallsep">Query 3:</td><td class="largesep"> {duration5:.3f} s</td><td class="smallsep">Graph 3:</td><td> {duration6:.3f} s</td>
</tr><tr>
<td class="smallsep">Total:</td><td> {duration7:.3f} s</td><td></td><td></td>
</tr>
</table>
</div>
</body>
</html>
""")
except Exception as e:
raise Exception(f"Error when querying energy export values: {e}")
raise Exception(f"Error when querying energy values: {e}")
finally:
if dbh is not None:
dbh.close()

View File

@@ -39,3 +39,5 @@ urllib3==2.3.0
Werkzeug==3.1.3
zipp==3.21.0
pillow==11.1.0
matplotlib==3.10.1

View File

@@ -5,10 +5,6 @@ from app import app
from app import oidc
@app.route('/')
def index():
abort(404)
@app.route('/generate_image')
def generate_image():
img = Image.new('RGB', (200, 100), color=(255, 255, 255))

View File

@@ -10,7 +10,7 @@ import ntp_routes
if __name__ == '__main__':
app.run(port=8080)
app.run(host='0.0.0.0', port=8080)
else:
exposed_app = ProxyFix(app, x_for=1, x_host=1)