Compare commits
4 Commits
Author | SHA1 | Date | |
---|---|---|---|
37c4a373b7 | |||
408cff442c | |||
67b88aa2a1 | |||
7b0238b4a5 |
@ -20,7 +20,7 @@ steps:
|
|||||||
when:
|
when:
|
||||||
- event: [push, tag]
|
- event: [push, tag]
|
||||||
deploy:
|
deploy:
|
||||||
image: quay.io/wollud1969/k8s-admin-helper:0.1.3
|
image: quay.io/wollud1969/k8s-admin-helper:0.2.1
|
||||||
environment:
|
environment:
|
||||||
KUBE_CONFIG_CONTENT:
|
KUBE_CONFIG_CONTENT:
|
||||||
from_secret: kube_config
|
from_secret: kube_config
|
||||||
|
@ -19,10 +19,11 @@ kubectl create namespace $NAMESPACE \
|
|||||||
-o yaml | \
|
-o yaml | \
|
||||||
kubectl -f - apply
|
kubectl -f - apply
|
||||||
|
|
||||||
SECRETS_FILE=`mktemp`
|
# SECRETS_FILE=`mktemp`
|
||||||
gpg --decrypt --passphrase $GPG_PASSPHRASE --yes --batch --homedir /tmp/.gnupg --output $SECRETS_FILE secrets.asc
|
# gpg --decrypt --passphrase $GPG_PASSPHRASE --yes --batch --homedir /tmp/.gnupg --output $SECRETS_FILE secrets.asc
|
||||||
. $SECRETS_FILE
|
# . $SECRETS_FILE
|
||||||
rm $SECRETS_FILE
|
# rm $SECRETS_FILE
|
||||||
|
eval "`cat secrets.asc | /usr/local/bin/decrypt-secrets.sh`"
|
||||||
|
|
||||||
kubectl create secret generic pv-stats \
|
kubectl create secret generic pv-stats \
|
||||||
--dry-run=client \
|
--dry-run=client \
|
||||||
|
22
src/run.py
22
src/run.py
@ -10,6 +10,7 @@ import plotly.express as px
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import psycopg
|
import psycopg
|
||||||
import sqlalchemy
|
import sqlalchemy
|
||||||
|
import time
|
||||||
|
|
||||||
try:
|
try:
|
||||||
redis_url = os.environ['REDIS_URL']
|
redis_url = os.environ['REDIS_URL']
|
||||||
@ -50,10 +51,15 @@ def index():
|
|||||||
dbh = psycopg.connect()
|
dbh = psycopg.connect()
|
||||||
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
|
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
df = pd.read_sql("SELECT month, cast(year AS varchar), current_energy AS value FROM pv_energy_by_month", con=engine)
|
df = pd.read_sql("SELECT month, cast(year AS varchar), current_energy AS value FROM pv_energy_by_month", con=engine)
|
||||||
|
step1_time = time.time()
|
||||||
|
duration1 = step1_time - start_time
|
||||||
fig_1 = px.bar(df, x='month', y='value', color='year', barmode='group')
|
fig_1 = px.bar(df, x='month', y='value', color='year', barmode='group')
|
||||||
|
step2_time = time.time()
|
||||||
|
duration2 = step2_time - start_time
|
||||||
fig_1.update_layout(
|
fig_1.update_layout(
|
||||||
title="Jahreswerte Exportierte Energie",
|
title=f"Jahreswerte Exportierte Energie {duration1:.3f}, {duration2:.3f}",
|
||||||
xaxis_title="",
|
xaxis_title="",
|
||||||
yaxis_title="",
|
yaxis_title="",
|
||||||
legend_title="Jahr",
|
legend_title="Jahr",
|
||||||
@ -66,22 +72,32 @@ def index():
|
|||||||
)
|
)
|
||||||
graph_html_1 = fig_1.to_html(full_html=False, default_height='33%')
|
graph_html_1 = fig_1.to_html(full_html=False, default_height='33%')
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
df = pd.read_sql("SELECT time_bucket('5 minutes', time) AS bucket, AVG(power) AS avg_power FROM pv_power_v WHERE time >= date_trunc('day', now()) - '1 day'::interval AND time < date_trunc('day', now()) GROUP BY bucket ORDER BY bucket", con=engine)
|
df = pd.read_sql("SELECT time_bucket('5 minutes', time) AS bucket, AVG(power) AS avg_power FROM pv_power_v WHERE time >= date_trunc('day', now()) - '1 day'::interval AND time < date_trunc('day', now()) GROUP BY bucket ORDER BY bucket", con=engine)
|
||||||
|
step1_time = time.time()
|
||||||
|
duration1 = step1_time - start_time
|
||||||
fig_2 = px.line(df, x='bucket', y='avg_power')
|
fig_2 = px.line(df, x='bucket', y='avg_power')
|
||||||
|
step2_time = time.time()
|
||||||
|
duration2 = step2_time - start_time
|
||||||
fig_2.update_layout(
|
fig_2.update_layout(
|
||||||
xaxis_title="",
|
xaxis_title="",
|
||||||
yaxis_title="",
|
yaxis_title="",
|
||||||
title="Export gestern",
|
title=f"Export gestern {duration1:.3f}, {duration2:.3f}",
|
||||||
yaxis=dict(ticksuffix=" W")
|
yaxis=dict(ticksuffix=" W")
|
||||||
)
|
)
|
||||||
graph_html_2 = fig_2.to_html(full_html=False, default_height='33%')
|
graph_html_2 = fig_2.to_html(full_html=False, default_height='33%')
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
df = pd.read_sql("SELECT time_bucket('5 minutes', time) AS bucket, AVG(power) AS avg_power FROM pv_power_v WHERE time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval GROUP BY bucket ORDER BY bucket", con=engine)
|
df = pd.read_sql("SELECT time_bucket('5 minutes', time) AS bucket, AVG(power) AS avg_power FROM pv_power_v WHERE time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval GROUP BY bucket ORDER BY bucket", con=engine)
|
||||||
|
step1_time = time.time()
|
||||||
|
duration1 = step1_time - start_time
|
||||||
fig_3 = px.line(df, x='bucket', y='avg_power')
|
fig_3 = px.line(df, x='bucket', y='avg_power')
|
||||||
|
step2_time = time.time()
|
||||||
|
duration2 = step2_time - start_time
|
||||||
fig_3.update_layout(
|
fig_3.update_layout(
|
||||||
xaxis_title="",
|
xaxis_title="",
|
||||||
yaxis_title="",
|
yaxis_title="",
|
||||||
title="Export heute",
|
title=f"Export heute {duration1:.3f}, {duration2:.3f}",
|
||||||
yaxis=dict(ticksuffix=" W")
|
yaxis=dict(ticksuffix=" W")
|
||||||
)
|
)
|
||||||
graph_html_3 = fig_3.to_html(full_html=False, default_height='33%')
|
graph_html_3 = fig_3.to_html(full_html=False, default_height='33%')
|
||||||
|
Reference in New Issue
Block a user