diff --git a/src/ntp_routes.py b/src/ntp_routes.py
index 622f5a5..4752277 100644
--- a/src/ntp_routes.py
+++ b/src/ntp_routes.py
@@ -1,8 +1,6 @@
from flask import Flask, session, g, render_template_string, Response
from loguru import logger
import json
-import plotly.express as px
-import plotly.graph_objects as po
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.ticker import ScalarFormatter
@@ -17,160 +15,9 @@ from app import oidc
-@app.route('/ntpserver')
-def ntpserver():
- try:
- dbh = psycopg.connect()
- engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
- query = """
- select time_bucket('5 minutes', time) as bucket,
- device,
- avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp,
- max(cast(values->'stratum'->>'value' as int)) as stratum
- from measurements
- where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
- application = 'TSM' and attributes->>'Label' = 'david'
- group by bucket, device
- order by bucket, device
- """
-
- df = pd.read_sql(query, con=engine)
-
- fig = po.Figure()
- fig.add_trace(po.Scatter(x=df['bucket'], y=df['rootdisp'], mode='lines', name='Root Dispersion', yaxis='y1', line=dict(color='red')))
- fig.add_trace(po.Scatter(x=df['bucket'], y=df['stratum'], mode='lines', name='Stratum', yaxis='y2', line=dict(color='blue')))
-
- fig.update_layout(
- title='NTP Server Numbers',
-
- # Linke Y-Achse
- yaxis=dict(
- title='Root Dispersion',
- ticksuffix=' ms'
- ),
-
- # Rechte Y-Achse
- yaxis2=dict(
- title='Stratum',
- overlaying='y', # Legt die zweite Y-Achse über die erste
- side='right', # Setzt sie auf die rechte Seite
- tickmode='linear', # Stellt sicher, dass die Ticks in festen Intervallen sind
- dtick=1, # Zeigt nur ganzzahlige Ticks
- ),
-
- legend=dict(x=0.05, y=1) # Position der Legende
- )
-
- graph_html_1 = fig.to_html(full_html=False, default_height='30%')
-
- query = """
- select time_bucket('5 minutes', time) as bucket,
- device,
- avg(cast(values->'time-req-pkts'->>'value' as float)) as packets
- from measurements
- where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
- application = 'SNMP' and attributes->>'Label' = 'david'
- group by bucket, device
- order by bucket, device
- """
- df = pd.read_sql(query, con=engine)
- fig_2 = px.line(df, x='bucket', y='packets')
- fig_2.update_layout(
- xaxis_title="",
- yaxis_title="",
- yaxis_ticksuffix="p/s",
- title=f"Time Requests"
- )
- graph_html_2 = fig_2.to_html(full_html=False, default_height='30%')
-
- query = """
- select time_bucket('5 minutes', time) as bucket,
- device,
- avg(cast(values->'load1'->>'value' as float)) as loadaverage1min
- from measurements
- where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
- application = 'SNMP' and attributes->>'Label' = 'david'
- group by bucket, device
- order by bucket, device
- """
- df = pd.read_sql(query, con=engine)
- fig_3 = px.line(df, x='bucket', y='loadaverage1min')
- fig_3.update_layout(
- xaxis_title="",
- yaxis_title="",
- title=f"CPU Load"
- )
- graph_html_3 = fig_3.to_html(full_html=False, default_height='30%')
-
- return render_template_string(f"""
-
-
- NTP Server Numbers
-
-
- {graph_html_1}
- {graph_html_2}
- {graph_html_3}
-
-
- """)
- except Exception as e:
- raise Exception(f"Error when querying NTP server values: {e}")
- finally:
- if dbh is not None:
- dbh.close()
-
-
-@app.route('/plot.png')
-def plot_png():
- dbh = psycopg.connect()
- engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
- query = """
- select time_bucket('5 minutes', time) as bucket,
- device,
- avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp,
- max(cast(values->'stratum'->>'value' as int)) as stratum
- from measurements
- where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
- application = 'SNMP' and attributes->>'Label' = 'harrison'
- group by bucket, device
- order by bucket, device
- """
- df = pd.read_sql(query, con=engine)
- df['rootdisp'] = df['rootdisp'] / 1e6
-
- plot_date = df['bucket'].dt.date.iloc[0] if not df.empty else "Unknown Date"
-
- fig, ax1 = plt.subplots(figsize=(10,5))
-
- ax1.plot(df['bucket'], df['rootdisp'], 'r-', label='Root Dispersion')
- ax1.set_xlabel('Time')
- ax1.set_ylabel('Root Dispersion (ms)', color='r')
- ax1.tick_params(axis='y', labelcolor='r')
-
- ax2 = ax1.twinx()
- ax2.plot(df['bucket'], df['stratum'], 'b-', label='Stratum')
- ax2.set_ylabel('Stratum', color='b')
- ax2.tick_params(axis='y', labelcolor='b')
- ax2.set_yticks(range(int(df['stratum'].min()), int(df['stratum'].max()) + 1))
-
- fig.suptitle(f"harrison - {plot_date}")
- fig.tight_layout()
-
- ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
- fig.autofmt_xdate(rotation=45)
-
- img_io = io.BytesIO()
- plt.savefig(img_io, format='png')
- img_io.seek(0)
- plt.close(fig)
-
- return Response(img_io, mimetype='image/png')
-
-
-@app.route('/plot2.png')
-def plot2_png():
+@app.route('/ntp/stratum-rootdisp.png')
+def stratum_rootdisp_png():
dbh = psycopg.connect()
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
query = """
@@ -206,7 +53,7 @@ def plot2_png():
ax1.set_ylabel('Root Dispersion (ms)', color='r')
ax1.tick_params(axis='y', labelcolor='r')
- ax2.plot(device_df['bucket'], device_df['stratum'], 'b--', label='Stratum')
+ ax2.plot(device_df['bucket'], device_df['stratum'], 'b-', label='Stratum')
ax2.set_ylabel('Stratum', color='b')
ax2.tick_params(axis='y', labelcolor='b')
ax2.set_yticks(range(int(device_df['stratum'].min()), int(device_df['stratum'].max()) + 1))
@@ -216,7 +63,62 @@ def plot2_png():
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
fig.autofmt_xdate(rotation=45)
- fig.suptitle(f'NTP Server Comparison - {plot_date}')
+ fig.suptitle(f'Stratum and Root Dispersion - {plot_date}')
+ fig.tight_layout()
+
+ img_io = io.BytesIO()
+ plt.savefig(img_io, format='png')
+ img_io.seek(0)
+ plt.close(fig)
+
+ return Response(img_io, mimetype='image/png')
+
+
+@app.route('/ntp/packets-load.png')
+def packets_load_png():
+ dbh = psycopg.connect()
+ engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
+ query = """
+ select time_bucket('5 minutes', time) as bucket,
+ attributes->>'Label' as device,
+ avg(cast(values->'load1'->>'value' as float)) as load,
+ avg(cast(values->'processed-pkts'->>'value' as int)) as packets
+ from measurements
+ where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
+ application = 'SNMP' and attributes->>'Label' IN ('harrison', 'david')
+ group by bucket, attributes->>'Label'
+ order by bucket, attributes->>'Label'
+ """
+ df = pd.read_sql(query, con=engine)
+
+
+ # Extract date for title
+ plot_date = df['bucket'].dt.date.iloc[0] if not df.empty else "Unknown Date"
+
+ # Create figure with two side-by-side subplots
+ fig, axes = plt.subplots(1, 2, figsize=(15, 5), sharex=True)
+
+ for i, device in enumerate(['harrison', 'david']):
+ ax1 = axes[i]
+ ax2 = ax1.twinx()
+
+ device_df = df[df['device'] == device]
+
+ ax1.plot(device_df['bucket'], device_df['load'], 'r-', label='CPU Load')
+ ax1.set_xlabel('Time')
+ ax1.set_ylabel('Load', color='r')
+ ax1.tick_params(axis='y', labelcolor='r')
+
+ ax2.plot(device_df['bucket'], device_df['packets'], 'b-', label='Processed Packets')
+ ax2.set_ylabel('Packets', color='b')
+ ax2.tick_params(axis='y', labelcolor='b')
+
+ ax1.set_title(f'{device.capitalize()}')
+
+ ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
+ fig.autofmt_xdate(rotation=45)
+
+ fig.suptitle(f'CPU Load and Processed Packets - {plot_date}')
fig.tight_layout()
img_io = io.BytesIO()