debug start script and separate routes into separate files
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
This commit is contained in:
parent
a972916704
commit
0914a91fa0
40
debug-build-run.sh
Executable file
40
debug-build-run.sh
Executable file
@ -0,0 +1,40 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -x
|
||||
|
||||
IMAGE_NAME=numberimage
|
||||
|
||||
docker build --progress=plain -t $IMAGE_NAME .
|
||||
|
||||
|
||||
SECRETS=`mktemp`
|
||||
gpg --decrypt --passphrase $GPG_PASSPHRASE --yes --batch --output $SECRETS ./deployment/secrets.asc
|
||||
. $SECRETS
|
||||
rm $SECRETS
|
||||
|
||||
DB_NAMESPACE=database1
|
||||
DB_DEPLOYNAME=database
|
||||
|
||||
REDIS_NAMESPACE=redis
|
||||
REDIS_SERVICE_NAME=redis
|
||||
|
||||
PGHOST=`kubectl get services $DB_DEPLOYNAME -n $DB_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
|
||||
REDISHOST=`kubectl get services $REDIS_SERVICE_NAME -n $REDIS_NAMESPACE -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
|
||||
|
||||
REDIS_URL=redis://$REDISHOST:6379/4
|
||||
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
--rm \
|
||||
-e "REDIS_URL=$REDIS_URL" \
|
||||
-e "SECRET_KEY=$SECRET_KEY" \
|
||||
-e "OIDC_CLIENT_SECRETS=$OIDC_CLIENT_SECRETS" \
|
||||
-e "PGHOST=$PGHOST" \
|
||||
-e "PGDATABASE=$PGDATABASE" \
|
||||
-e "PGSSLMODE=$PGSSLMODE" \
|
||||
-e "PGUSER=$PGUSER" \
|
||||
-e "PGPASSWORD=$PGPASSWORD" \
|
||||
-p 8080:8080 \
|
||||
$IMAGE_NAME
|
||||
|
32
src/app.py
Normal file
32
src/app.py
Normal file
@ -0,0 +1,32 @@
|
||||
from flask import Flask, session, g, render_template_string
|
||||
from flask_session import Session
|
||||
from flask_oidc import OpenIDConnect
|
||||
from werkzeug.middleware.proxy_fix import ProxyFix
|
||||
from loguru import logger
|
||||
import redis
|
||||
import json
|
||||
import os
|
||||
|
||||
try:
|
||||
redis_url = os.environ['REDIS_URL']
|
||||
oidc_client_secrets = os.environ['OIDC_CLIENT_SECRETS']
|
||||
secret_key = os.environ['SECRET_KEY']
|
||||
except KeyError as e:
|
||||
logger.error(f"Required environment variable not set ({e})")
|
||||
raise e
|
||||
|
||||
app = Flask(__name__)
|
||||
app.config.update({
|
||||
'SECRET_KEY': secret_key,
|
||||
'SESSION_TYPE': 'redis',
|
||||
'SESSION_REDIS': redis.from_url(redis_url),
|
||||
'OIDC_CLIENT_SECRETS': json.loads(oidc_client_secrets),
|
||||
'OIDC_SCOPES': 'openid email',
|
||||
'OIDC_USER_INFO_ENABLED': True,
|
||||
'SESSION_USE_SIGNER': True,
|
||||
})
|
||||
Session(app)
|
||||
oidc = OpenIDConnect(app)
|
||||
|
||||
|
||||
|
16
src/debug_routes.py
Normal file
16
src/debug_routes.py
Normal file
@ -0,0 +1,16 @@
|
||||
from loguru import logger
|
||||
import json
|
||||
|
||||
from app import app
|
||||
from app import oidc
|
||||
|
||||
|
||||
@app.route('/token_debug', methods=['GET'])
|
||||
@oidc.require_login
|
||||
def token_debug():
|
||||
# Access Token vom Identity Provider abrufen
|
||||
access_token = oidc.get_access_token()
|
||||
return json.dumps({
|
||||
"access_token": access_token
|
||||
})
|
||||
|
119
src/ntp_routes.py
Normal file
119
src/ntp_routes.py
Normal file
@ -0,0 +1,119 @@
|
||||
from loguru import logger
|
||||
import json
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as po
|
||||
import pandas as pd
|
||||
import psycopg
|
||||
import sqlalchemy
|
||||
import time
|
||||
|
||||
from app import app
|
||||
from app import oidc
|
||||
|
||||
|
||||
|
||||
@app.route('/ntpserver')
|
||||
def ntpserver():
|
||||
try:
|
||||
dbh = psycopg.connect()
|
||||
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
|
||||
|
||||
query = """
|
||||
select time_bucket('5 minutes', time) as bucket,
|
||||
device,
|
||||
avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp,
|
||||
max(cast(values->'stratum'->>'value' as int)) as stratum
|
||||
from measurements
|
||||
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
|
||||
application = 'TSM' and attributes->>'Label' = 'david'
|
||||
group by bucket, device
|
||||
order by bucket, device
|
||||
"""
|
||||
|
||||
df = pd.read_sql(query, con=engine)
|
||||
|
||||
fig = po.Figure()
|
||||
fig.add_trace(po.Scatter(x=df['bucket'], y=df['rootdisp'], mode='lines', name='Root Dispersion', yaxis='y1', line=dict(color='red')))
|
||||
fig.add_trace(po.Scatter(x=df['bucket'], y=df['stratum'], mode='lines', name='Stratum', yaxis='y2', line=dict(color='blue')))
|
||||
|
||||
fig.update_layout(
|
||||
title='NTP Server Numbers',
|
||||
|
||||
# Linke Y-Achse
|
||||
yaxis=dict(
|
||||
title='Root Dispersion',
|
||||
ticksuffix=' ms'
|
||||
),
|
||||
|
||||
# Rechte Y-Achse
|
||||
yaxis2=dict(
|
||||
title='Stratum',
|
||||
overlaying='y', # Legt die zweite Y-Achse über die erste
|
||||
side='right', # Setzt sie auf die rechte Seite
|
||||
tickmode='linear', # Stellt sicher, dass die Ticks in festen Intervallen sind
|
||||
dtick=1, # Zeigt nur ganzzahlige Ticks
|
||||
),
|
||||
|
||||
legend=dict(x=0.05, y=1) # Position der Legende
|
||||
)
|
||||
|
||||
graph_html_1 = fig.to_html(full_html=False, default_height='30%')
|
||||
|
||||
query = """
|
||||
select time_bucket('5 minutes', time) as bucket,
|
||||
device,
|
||||
avg(cast(values->'time-req-pkts'->>'value' as float)) as packets
|
||||
from measurements
|
||||
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
|
||||
application = 'SNMP' and attributes->>'Label' = 'david'
|
||||
group by bucket, device
|
||||
order by bucket, device
|
||||
"""
|
||||
df = pd.read_sql(query, con=engine)
|
||||
fig_2 = px.line(df, x='bucket', y='packets')
|
||||
fig_2.update_layout(
|
||||
xaxis_title="",
|
||||
yaxis_title="",
|
||||
yaxis_ticksuffix="p/s",
|
||||
title=f"Time Requests"
|
||||
)
|
||||
graph_html_2 = fig_2.to_html(full_html=False, default_height='30%')
|
||||
|
||||
query = """
|
||||
select time_bucket('5 minutes', time) as bucket,
|
||||
device,
|
||||
avg(cast(values->'load1'->>'value' as float)) as loadaverage1min
|
||||
from measurements
|
||||
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
|
||||
application = 'SNMP' and attributes->>'Label' = 'david'
|
||||
group by bucket, device
|
||||
order by bucket, device
|
||||
"""
|
||||
df = pd.read_sql(query, con=engine)
|
||||
fig_3 = px.line(df, x='bucket', y='loadaverage1min')
|
||||
fig_3.update_layout(
|
||||
xaxis_title="",
|
||||
yaxis_title="",
|
||||
title=f"CPU Load"
|
||||
)
|
||||
graph_html_3 = fig_3.to_html(full_html=False, default_height='30%')
|
||||
|
||||
return render_template_string(f"""
|
||||
<html>
|
||||
<head>
|
||||
<title>NTP Server Numbers</title>
|
||||
</head>
|
||||
<body>
|
||||
{graph_html_1}
|
||||
{graph_html_2}
|
||||
{graph_html_3}
|
||||
</body>
|
||||
</html>
|
||||
""")
|
||||
except Exception as e:
|
||||
raise Exception(f"Error when querying NTP server values: {e}")
|
||||
finally:
|
||||
if dbh is not None:
|
||||
dbh.close()
|
||||
|
||||
|
116
src/pv_routes.py
Normal file
116
src/pv_routes.py
Normal file
@ -0,0 +1,116 @@
|
||||
from loguru import logger
|
||||
import json
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as po
|
||||
import pandas as pd
|
||||
import psycopg
|
||||
import sqlalchemy
|
||||
import time
|
||||
|
||||
from app import app
|
||||
from app import oidc
|
||||
|
||||
|
||||
@app.route('/')
|
||||
@oidc.require_login
|
||||
def index():
|
||||
try:
|
||||
stepX_time = time.time()
|
||||
dbh = psycopg.connect()
|
||||
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
|
||||
|
||||
step0_time = time.time()
|
||||
df = pd.read_sql("SELECT month, cast(year AS varchar), current_energy AS value FROM pv_energy_by_month", con=engine)
|
||||
step1_time = time.time()
|
||||
duration1 = step1_time - step0_time
|
||||
logger.info(f"{duration1=}")
|
||||
fig_1 = px.bar(df, x='month', y='value', color='year', barmode='group')
|
||||
step2_time = time.time()
|
||||
duration2 = step2_time - step1_time
|
||||
logger.info(f"{duration2=}")
|
||||
fig_1.update_layout(
|
||||
title=f"Jahreswerte Exportierte Energie {duration1:.3f}, {duration2:.3f}",
|
||||
xaxis_title="",
|
||||
yaxis_title="",
|
||||
legend_title="Jahr",
|
||||
xaxis=dict(
|
||||
tickmode="array",
|
||||
tickvals=list(range(1, 13)), # Monate 1–12
|
||||
ticktext=["Jan", "Feb", "Mär", "Apr", "Mai", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Dez"]
|
||||
),
|
||||
yaxis=dict(ticksuffix=" kWh")
|
||||
)
|
||||
graph_html_1 = fig_1.to_html(full_html=False, default_height='30%')
|
||||
|
||||
step3_time = time.time()
|
||||
df = pd.read_sql("SELECT time_bucket('5 minutes', time) AS bucket, AVG(power) AS avg_power FROM pv_power_v WHERE time >= date_trunc('day', now()) - '1 day'::interval AND time < date_trunc('day', now()) GROUP BY bucket ORDER BY bucket", con=engine)
|
||||
step4_time = time.time()
|
||||
duration3 = step4_time - step3_time
|
||||
logger.info(f"{duration3=}")
|
||||
fig_2 = px.line(df, x='bucket', y='avg_power')
|
||||
step5_time = time.time()
|
||||
duration4 = step5_time - step4_time
|
||||
logger.info(f"{duration4=}")
|
||||
fig_2.update_layout(
|
||||
xaxis_title="",
|
||||
yaxis_title="",
|
||||
title=f"Export gestern {duration3:.3f}, {duration4:.3f}",
|
||||
yaxis=dict(ticksuffix=" W")
|
||||
)
|
||||
graph_html_2 = fig_2.to_html(full_html=False, default_height='30%')
|
||||
|
||||
step6_time = time.time()
|
||||
df = pd.read_sql("SELECT time_bucket('5 minutes', time) AS bucket, AVG(power) AS avg_power FROM pv_power_v WHERE time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval GROUP BY bucket ORDER BY bucket", con=engine)
|
||||
step7_time = time.time()
|
||||
duration5 = step7_time - step6_time
|
||||
logger.info(f"{duration5=}")
|
||||
fig_3 = px.line(df, x='bucket', y='avg_power')
|
||||
step8_time = time.time()
|
||||
duration6 = step8_time - step7_time
|
||||
logger.info(f"{duration6=}")
|
||||
fig_3.update_layout(
|
||||
xaxis_title="",
|
||||
yaxis_title="",
|
||||
title=f"Export heute {duration5:.3f}, {duration6:.3f}",
|
||||
yaxis=dict(ticksuffix=" W")
|
||||
)
|
||||
graph_html_3 = fig_3.to_html(full_html=False, default_height='30%')
|
||||
stepZ_time = time.time()
|
||||
duration7 = stepZ_time - stepX_time
|
||||
logger.info(f"{duration7=}")
|
||||
|
||||
return render_template_string(f"""
|
||||
<html>
|
||||
<head>
|
||||
<title>Jahreswerte PV-Energie</title>
|
||||
</head>
|
||||
<body>
|
||||
{graph_html_1}
|
||||
{graph_html_2}
|
||||
{graph_html_3}
|
||||
<div style="height:9vh; background-color:lightgrey; font-family: Courier, Consolas, monospace;">
|
||||
<table style="border-collapse: collapse;">
|
||||
<style>
|
||||
td.smallsep {{ padding-right: 10px }}
|
||||
td.largesep {{ padding-right: 30px }}
|
||||
</style>
|
||||
<tr>
|
||||
<td class="smallsep">Query 1:</td><td class="largesep"> {duration1:.3f} s</td><td class="smallsep">Graph 1:</td><td> {duration2:.3f} s</td>
|
||||
</tr><tr>
|
||||
<td class="smallsep">Query 2:</td><td class="largesep"> {duration3:.3f} s</td><td class="smallsep">Graph 2:</td><td> {duration4:.3f} s</td>
|
||||
</tr><tr>
|
||||
<td class="smallsep">Query 3:</td><td class="largesep"> {duration5:.3f} s</td><td class="smallsep">Graph 3:</td><td> {duration6:.3f} s</td>
|
||||
</tr><tr>
|
||||
<td class="smallsep">Total:</td><td> {duration7:.3f} s</td><td></td><td></td>
|
||||
</tr>
|
||||
</table>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
""")
|
||||
except Exception as e:
|
||||
raise Exception(f"Error when querying energy export values: {e}")
|
||||
finally:
|
||||
if dbh is not None:
|
||||
dbh.close()
|
||||
|
257
src/run.py
257
src/run.py
@ -1,261 +1,10 @@
|
||||
from flask import Flask, session, g, render_template_string
|
||||
from flask_session import Session
|
||||
from flask_oidc import OpenIDConnect
|
||||
from werkzeug.middleware.proxy_fix import ProxyFix
|
||||
from loguru import logger
|
||||
import redis
|
||||
import json
|
||||
import os
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as po
|
||||
import pandas as pd
|
||||
import psycopg
|
||||
import sqlalchemy
|
||||
import time
|
||||
|
||||
try:
|
||||
redis_url = os.environ['REDIS_URL']
|
||||
oidc_client_secrets = os.environ['OIDC_CLIENT_SECRETS']
|
||||
secret_key = os.environ['SECRET_KEY']
|
||||
except KeyError as e:
|
||||
logger.error(f"Required environment variable not set ({e})")
|
||||
raise e
|
||||
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
app.config.update({
|
||||
'SECRET_KEY': secret_key,
|
||||
'SESSION_TYPE': 'redis',
|
||||
'SESSION_REDIS': redis.from_url(redis_url),
|
||||
'OIDC_CLIENT_SECRETS': json.loads(oidc_client_secrets),
|
||||
'OIDC_SCOPES': 'openid email',
|
||||
'OIDC_USER_INFO_ENABLED': True,
|
||||
'SESSION_USE_SIGNER': True,
|
||||
})
|
||||
Session(app)
|
||||
oidc = OpenIDConnect(app)
|
||||
|
||||
@app.route('/token_debug', methods=['GET'])
|
||||
@oidc.require_login
|
||||
def token_debug():
|
||||
# Access Token vom Identity Provider abrufen
|
||||
access_token = oidc.get_access_token()
|
||||
return json.dumps({
|
||||
"access_token": access_token
|
||||
})
|
||||
|
||||
@app.route('/')
|
||||
@oidc.require_login
|
||||
def index():
|
||||
try:
|
||||
stepX_time = time.time()
|
||||
dbh = psycopg.connect()
|
||||
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
|
||||
|
||||
step0_time = time.time()
|
||||
df = pd.read_sql("SELECT month, cast(year AS varchar), current_energy AS value FROM pv_energy_by_month", con=engine)
|
||||
step1_time = time.time()
|
||||
duration1 = step1_time - step0_time
|
||||
logger.info(f"{duration1=}")
|
||||
fig_1 = px.bar(df, x='month', y='value', color='year', barmode='group')
|
||||
step2_time = time.time()
|
||||
duration2 = step2_time - step1_time
|
||||
logger.info(f"{duration2=}")
|
||||
fig_1.update_layout(
|
||||
title=f"Jahreswerte Exportierte Energie {duration1:.3f}, {duration2:.3f}",
|
||||
xaxis_title="",
|
||||
yaxis_title="",
|
||||
legend_title="Jahr",
|
||||
xaxis=dict(
|
||||
tickmode="array",
|
||||
tickvals=list(range(1, 13)), # Monate 1–12
|
||||
ticktext=["Jan", "Feb", "Mär", "Apr", "Mai", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Dez"]
|
||||
),
|
||||
yaxis=dict(ticksuffix=" kWh")
|
||||
)
|
||||
graph_html_1 = fig_1.to_html(full_html=False, default_height='30%')
|
||||
|
||||
step3_time = time.time()
|
||||
df = pd.read_sql("SELECT time_bucket('5 minutes', time) AS bucket, AVG(power) AS avg_power FROM pv_power_v WHERE time >= date_trunc('day', now()) - '1 day'::interval AND time < date_trunc('day', now()) GROUP BY bucket ORDER BY bucket", con=engine)
|
||||
step4_time = time.time()
|
||||
duration3 = step4_time - step3_time
|
||||
logger.info(f"{duration3=}")
|
||||
fig_2 = px.line(df, x='bucket', y='avg_power')
|
||||
step5_time = time.time()
|
||||
duration4 = step5_time - step4_time
|
||||
logger.info(f"{duration4=}")
|
||||
fig_2.update_layout(
|
||||
xaxis_title="",
|
||||
yaxis_title="",
|
||||
title=f"Export gestern {duration3:.3f}, {duration4:.3f}",
|
||||
yaxis=dict(ticksuffix=" W")
|
||||
)
|
||||
graph_html_2 = fig_2.to_html(full_html=False, default_height='30%')
|
||||
|
||||
step6_time = time.time()
|
||||
df = pd.read_sql("SELECT time_bucket('5 minutes', time) AS bucket, AVG(power) AS avg_power FROM pv_power_v WHERE time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval GROUP BY bucket ORDER BY bucket", con=engine)
|
||||
step7_time = time.time()
|
||||
duration5 = step7_time - step6_time
|
||||
logger.info(f"{duration5=}")
|
||||
fig_3 = px.line(df, x='bucket', y='avg_power')
|
||||
step8_time = time.time()
|
||||
duration6 = step8_time - step7_time
|
||||
logger.info(f"{duration6=}")
|
||||
fig_3.update_layout(
|
||||
xaxis_title="",
|
||||
yaxis_title="",
|
||||
title=f"Export heute {duration5:.3f}, {duration6:.3f}",
|
||||
yaxis=dict(ticksuffix=" W")
|
||||
)
|
||||
graph_html_3 = fig_3.to_html(full_html=False, default_height='30%')
|
||||
stepZ_time = time.time()
|
||||
duration7 = stepZ_time - stepX_time
|
||||
logger.info(f"{duration7=}")
|
||||
|
||||
return render_template_string(f"""
|
||||
<html>
|
||||
<head>
|
||||
<title>Jahreswerte PV-Energie</title>
|
||||
</head>
|
||||
<body>
|
||||
{graph_html_1}
|
||||
{graph_html_2}
|
||||
{graph_html_3}
|
||||
<div style="height:9vh; background-color:lightgrey; font-family: Courier, Consolas, monospace;">
|
||||
<table style="border-collapse: collapse;">
|
||||
<style>
|
||||
td.smallsep {{ padding-right: 10px }}
|
||||
td.largesep {{ padding-right: 30px }}
|
||||
</style>
|
||||
<tr>
|
||||
<td class="smallsep">Query 1:</td><td class="largesep"> {duration1:.3f} s</td><td class="smallsep">Graph 1:</td><td> {duration2:.3f} s</td>
|
||||
</tr><tr>
|
||||
<td class="smallsep">Query 2:</td><td class="largesep"> {duration3:.3f} s</td><td class="smallsep">Graph 2:</td><td> {duration4:.3f} s</td>
|
||||
</tr><tr>
|
||||
<td class="smallsep">Query 3:</td><td class="largesep"> {duration5:.3f} s</td><td class="smallsep">Graph 3:</td><td> {duration6:.3f} s</td>
|
||||
</tr><tr>
|
||||
<td class="smallsep">Total:</td><td> {duration7:.3f} s</td><td></td><td></td>
|
||||
</tr>
|
||||
</table>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
""")
|
||||
except Exception as e:
|
||||
raise Exception(f"Error when querying energy export values: {e}")
|
||||
finally:
|
||||
if dbh is not None:
|
||||
dbh.close()
|
||||
|
||||
|
||||
@app.route('/ntpserver')
|
||||
def ntpserver():
|
||||
try:
|
||||
dbh = psycopg.connect()
|
||||
engine = sqlalchemy.create_engine("postgresql+psycopg://", creator=lambda: dbh)
|
||||
|
||||
query = """
|
||||
select time_bucket('5 minutes', time) as bucket,
|
||||
device,
|
||||
avg(cast(values->'rootdisp'->>'value' as float)) as rootdisp,
|
||||
max(cast(values->'stratum'->>'value' as int)) as stratum
|
||||
from measurements
|
||||
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
|
||||
application = 'TSM' and attributes->>'Label' = 'david'
|
||||
group by bucket, device
|
||||
order by bucket, device
|
||||
"""
|
||||
|
||||
df = pd.read_sql(query, con=engine)
|
||||
|
||||
fig = po.Figure()
|
||||
fig.add_trace(po.Scatter(x=df['bucket'], y=df['rootdisp'], mode='lines', name='Root Dispersion', yaxis='y1', line=dict(color='red')))
|
||||
fig.add_trace(po.Scatter(x=df['bucket'], y=df['stratum'], mode='lines', name='Stratum', yaxis='y2', line=dict(color='blue')))
|
||||
|
||||
fig.update_layout(
|
||||
title='NTP Server Numbers',
|
||||
|
||||
# Linke Y-Achse
|
||||
yaxis=dict(
|
||||
title='Root Dispersion',
|
||||
ticksuffix=' ms'
|
||||
),
|
||||
|
||||
# Rechte Y-Achse
|
||||
yaxis2=dict(
|
||||
title='Stratum',
|
||||
overlaying='y', # Legt die zweite Y-Achse über die erste
|
||||
side='right', # Setzt sie auf die rechte Seite
|
||||
tickmode='linear', # Stellt sicher, dass die Ticks in festen Intervallen sind
|
||||
dtick=1, # Zeigt nur ganzzahlige Ticks
|
||||
),
|
||||
|
||||
legend=dict(x=0.05, y=1) # Position der Legende
|
||||
)
|
||||
|
||||
graph_html_1 = fig.to_html(full_html=False, default_height='30%')
|
||||
|
||||
query = """
|
||||
select time_bucket('5 minutes', time) as bucket,
|
||||
device,
|
||||
avg(cast(values->'time-req-pkts'->>'value' as float)) as packets
|
||||
from measurements
|
||||
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
|
||||
application = 'SNMP' and attributes->>'Label' = 'david'
|
||||
group by bucket, device
|
||||
order by bucket, device
|
||||
"""
|
||||
df = pd.read_sql(query, con=engine)
|
||||
fig_2 = px.line(df, x='bucket', y='packets')
|
||||
fig_2.update_layout(
|
||||
xaxis_title="",
|
||||
yaxis_title="",
|
||||
yaxis_ticksuffix="p/s",
|
||||
title=f"Time Requests"
|
||||
)
|
||||
graph_html_2 = fig_2.to_html(full_html=False, default_height='30%')
|
||||
|
||||
query = """
|
||||
select time_bucket('5 minutes', time) as bucket,
|
||||
device,
|
||||
avg(cast(values->'load1'->>'value' as float)) as loadaverage1min
|
||||
from measurements
|
||||
where time >= date_trunc('day', now()) AND time < date_trunc('day', now()) + '1 day'::interval and
|
||||
application = 'SNMP' and attributes->>'Label' = 'david'
|
||||
group by bucket, device
|
||||
order by bucket, device
|
||||
"""
|
||||
df = pd.read_sql(query, con=engine)
|
||||
fig_3 = px.line(df, x='bucket', y='loadaverage1min')
|
||||
fig_3.update_layout(
|
||||
xaxis_title="",
|
||||
yaxis_title="",
|
||||
title=f"CPU Load"
|
||||
)
|
||||
graph_html_3 = fig_3.to_html(full_html=False, default_height='30%')
|
||||
|
||||
return render_template_string(f"""
|
||||
<html>
|
||||
<head>
|
||||
<title>NTP Server Numbers</title>
|
||||
</head>
|
||||
<body>
|
||||
{graph_html_1}
|
||||
{graph_html_2}
|
||||
{graph_html_3}
|
||||
</body>
|
||||
</html>
|
||||
""")
|
||||
except Exception as e:
|
||||
raise Exception(f"Error when querying NTP server values: {e}")
|
||||
finally:
|
||||
if dbh is not None:
|
||||
dbh.close()
|
||||
|
||||
|
||||
|
||||
from app import app
|
||||
|
||||
import routes
|
||||
import debug_routes
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
Loading…
x
Reference in New Issue
Block a user