newcar/my_src/oled.c

526 lines
12 KiB
C

/*
* Code found at http://www.instructables.com/id/How-to-use-OLED-display-arduino-module/
* Thank you very much!
* Adapted from Arduino to STM32 HAL by wollud1969
*/
#include "oled.h"
#include "oled-fonts.h"
#include "stm32f1xx_hal.h"
#define HIGH GPIO_PIN_SET
#define LOW GPIO_PIN_RESET
// DO: SPI Clk, D1: SPI Data
extern SPI_HandleTypeDef hspi1;
static void __LEDPIN_RST(GPIO_PinState v) {
HAL_GPIO_WritePin(OLED_RST_GPIO_Port, OLED_RST_Pin, v);
}
static void __LEDPIN_DC(GPIO_PinState v) {
HAL_GPIO_WritePin(OLED_DC_GPIO_Port, OLED_DC_Pin, v);
}
static void __LEDPIN_CS(GPIO_PinState v) {
HAL_GPIO_WritePin(OLED_CS_GPIO_Port, OLED_CS_Pin, v);
}
void LED_WrDat(unsigned char data)
{
__LEDPIN_CS(LOW);
__LEDPIN_DC(HIGH);
HAL_SPI_Transmit(&hspi1, &data, 1, 0);
__LEDPIN_CS(HIGH);
}
void LED_WrCmd(unsigned char cmd)
{
__LEDPIN_CS(LOW);
__LEDPIN_DC(LOW);
HAL_SPI_Transmit(&hspi1, &cmd, 1, 0);
__LEDPIN_CS(HIGH);
}
void LED_Set_Pos(unsigned char x, unsigned char y)
{
LED_WrCmd(0xb0+y);
LED_WrCmd(((x&0xf0)>>4)|0x10);
LED_WrCmd((x&0x0f)|0x00);
}
void LED_Fill(unsigned char bmp_data)
{
unsigned char y,x;
for(y=0;y<8;y++)
{
LED_WrCmd(0xb0+y);
LED_WrCmd(0x00);
LED_WrCmd(0x10);
for(x=0;x<128;x++)
LED_WrDat(bmp_data);
}
}
void LED_CLS(void)
{
unsigned char y,x;
for(y=0;y<8;y++)
{
LED_WrCmd(0xb0+y);
LED_WrCmd(0x00);
LED_WrCmd(0x10);
for(x=0;x<128;x++)
LED_WrDat(0);
}
}
void LED_DLY_ms(unsigned int ms)
{
uint32_t start = HAL_GetTick();
while (HAL_GetTick() < start + ms);
}
void SetStartColumn(unsigned char d)
{
LED_WrCmd(0x00+d%16); // Set Lower Column Start Address for Page Addressing Mode
// Default => 0x00
LED_WrCmd(0x10+d/16); // Set Higher Column Start Address for Page Addressing Mode
// Default => 0x10
}
void SetAddressingMode(unsigned char d)
{
LED_WrCmd(0x20); // Set Memory Addressing Mode
LED_WrCmd(d); // Default => 0x02
// 0x00 => Horizontal Addressing Mode
// 0x01 => Vertical Addressing Mode
// 0x02 => Page Addressing Mode
}
void SetColumnAddress(unsigned char a, unsigned char b)
{
LED_WrCmd(0x21); // Set Column Address
LED_WrCmd(a); // Default => 0x00 (Column Start Address)
LED_WrCmd(b); // Default => 0x7F (Column End Address)
}
void SetPageAddress(unsigned char a, unsigned char b)
{
LED_WrCmd(0x22); // Set Page Address
LED_WrCmd(a); // Default => 0x00 (Page Start Address)
LED_WrCmd(b); // Default => 0x07 (Page End Address)
}
void SetStartLine(unsigned char d)
{
LED_WrCmd(0x40|d); // Set Display Start Line
// Default => 0x40 (0x00)
}
void SetContrastControl(unsigned char d)
{
LED_WrCmd(0x81); // Set Contrast Control
LED_WrCmd(d); // Default => 0x7F
}
void Set_Charge_Pump(unsigned char d)
{
LED_WrCmd(0x8D); // Set Charge Pump
LED_WrCmd(0x10|d); // Default => 0x10
// 0x10 (0x00) => Disable Charge Pump
// 0x14 (0x04) => Enable Charge Pump
}
void Set_Segment_Remap(unsigned char d)
{
LED_WrCmd(0xA0|d); // Set Segment Re-Map
// Default => 0xA0
// 0xA0 (0x00) => Column Address 0 Mapped to SEG0
// 0xA1 (0x01) => Column Address 0 Mapped to SEG127
}
void Set_Entire_Display(unsigned char d)
{
LED_WrCmd(0xA4|d); // Set Entire Display On / Off
// Default => 0xA4
// 0xA4 (0x00) => Normal Display
// 0xA5 (0x01) => Entire Display On
}
void Set_Inverse_Display(unsigned char d)
{
LED_WrCmd(0xA6|d); // Set Inverse Display On/Off
// Default => 0xA6
// 0xA6 (0x00) => Normal Display
// 0xA7 (0x01) => Inverse Display On
}
void Set_Multiplex_Ratio(unsigned char d)
{
LED_WrCmd(0xA8); // Set Multiplex Ratio
LED_WrCmd(d); // Default => 0x3F (1/64 Duty)
}
void Set_Display_On_Off(unsigned char d)
{
LED_WrCmd(0xAE|d); // Set Display On/Off
// Default => 0xAE
// 0xAE (0x00) => Display Off
// 0xAF (0x01) => Display On
}
void SetStartPage(unsigned char d)
{
LED_WrCmd(0xB0|d); // Set Page Start Address for Page Addressing Mode
// Default => 0xB0 (0x00)
}
void Set_Common_Remap(unsigned char d)
{
LED_WrCmd(0xC0|d); // Set COM Output Scan Direction
// Default => 0xC0
// 0xC0 (0x00) => Scan from COM0 to 63
// 0xC8 (0x08) => Scan from COM63 to 0
}
void Set_Display_Offset(unsigned char d)
{
LED_WrCmd(0xD3); // Set Display Offset
LED_WrCmd(d); // Default => 0x00
}
void Set_Display_Clock(unsigned char d)
{
LED_WrCmd(0xD5); // Set Display Clock Divide Ratio / Oscillator Frequency
LED_WrCmd(d); // Default => 0x80
// D[3:0] => Display Clock Divider
// D[7:4] => Oscillator Frequency
}
void Set_Precharge_Period(unsigned char d)
{
LED_WrCmd(0xD9); // Set Pre-Charge Period
LED_WrCmd(d); // Default => 0x22 (2 Display Clocks [Phase 2] / 2 Display Clocks [Phase 1])
// D[3:0] => Phase 1 Period in 1~15 Display Clocks
// D[7:4] => Phase 2 Period in 1~15 Display Clocks
}
void Set_Common_Config(unsigned char d)
{
LED_WrCmd(0xDA); // Set COM Pins Hardware Configuration
LED_WrCmd(0x02|d); // Default => 0x12 (0x10)
// Alternative COM Pin Configuration
// Disable COM Left/Right Re-Map
}
void Set_VCOMH(unsigned char d)
{
LED_WrCmd(0xDB); // Set VCOMH Deselect Level
LED_WrCmd(d); // Default => 0x20 (0.77*VCC)
}
void Set_NOP(void)
{
LED_WrCmd(0xE3); // Command for No Operation
}
void oledInit(void)
{
// LEDPIN_Init();
// LED_PORT=0X0F;
//LED_SCLH;;;
//LED_RSTL;;;
//digitalWrite(SCL_PIN,HIGH);;;
__LEDPIN_RST(LOW);
// for(i=0;i<100;i++)asm("nop");
LED_DLY_ms(50);
//LED_RSTH;;;
__LEDPIN_RST(HIGH);
Set_Display_On_Off(0x00); // Display Off (0x00/0x01)
Set_Display_Clock(0x80); // Set Clock as 100 Frames/Sec
Set_Multiplex_Ratio(0x3F); // 1/64 Duty (0x0F~0x3F)
Set_Display_Offset(0x00); // Shift Mapping RAM Counter (0x00~0x3F)
SetStartLine(0x00); // Set Mapping RAM Display Start Line (0x00~0x3F)
Set_Charge_Pump(0x04); // Enable Embedded DC/DC Converter (0x00/0x04)
SetAddressingMode(0x02); // Set Page Addressing Mode (0x00/0x01/0x02)
Set_Segment_Remap(0x01); // Set SEG/Column Mapping
Set_Common_Remap(0x08); // Set COM/Row Scan Direction
Set_Common_Config(0x10); // Set Sequential Configuration (0x00/0x10)
SetContrastControl(0xCF); // Set SEG Output Current
Set_Precharge_Period(0xF1); // Set Pre-Charge as 15 Clocks & Discharge as 1 Clock
Set_VCOMH(0x40); // Set VCOM Deselect Level
Set_Entire_Display(0x00); // Disable Entire Display On (0x00/0x01)
Set_Inverse_Display(0x00); // Disable Inverse Display On (0x00/0x01)
Set_Display_On_Off(0x01); // Display On (0x00/0x01)
LED_Fill(0x00); //clear all
LED_Set_Pos(0,0);
}
void LED_P6x8Char(unsigned char x,unsigned char y,unsigned char ch)
{
unsigned char c=0,i=0;
c =ch-32;
if(x>122)
{
x=0;
y++;
}
LED_Set_Pos(x,y);
for(i=0;i<6;i++)
{
LED_WrDat(F6x8[c][i]);
}
}
void LED_P6x8Str(unsigned char x,unsigned char y,char ch[])
{
unsigned char c=0,i=0,j=0;
while (ch[j]!='\0')
{
c =ch[j]-32;
if(x>126)
{
x=0;
y++;
}
LED_Set_Pos(x,y);
for(i=0;i<6;i++)
{
LED_WrDat(F6x8[c][i]);
}
x+=6;
j++;
}
}
void LED_P8x16Str(unsigned char x,unsigned char y,char ch[])
{
unsigned char c=0,i=0,j=0;
while (ch[j]!='\0')
{
c =ch[j]-32;
if(x>120)
{
x=0;
y++;
}
LED_Set_Pos(x,y);
for(i=0;i<8;i++)
{
LED_WrDat(F8X16[(c<<4)+i]);
}
LED_Set_Pos(x,y+1);
for(i=0;i<8;i++)
{
LED_WrDat(F8X16[(c<<4)+i+8]);
}
x+=8;
j++;
}
}
void LED_PrintBMP(unsigned char x0,unsigned char y0,unsigned char x1,unsigned char y1,unsigned char bmp[])
{
int ii=0;
unsigned char x,y;
for(y=y0;y<=y1;y++)
{
LED_Set_Pos(x0,y);
for(x=x0;x<x1;x++)
{
LED_WrDat(bmp[ii++]);
}
}
}
//void LED_PrintValueC(unsigned char x, unsigned char y, char data)
//{
// unsigned char i,j,k;
// if(data < 0)
// {
// LED_P6x8Char(x,y,'-');
// data = - data;
// }
// else
// {
// LED_P6x8Char(x,y,'+');
// }
// i = data/100;
// j = (data%100)/10;
// k = data%10;
// LED_P6x8Char(x+6,y,i+48);
// LED_P6x8Char(x+12,y,j+48);
// LED_P6x8Char(x+18,y,k+48);
//}
//
//
//void LED_PrintValueI(unsigned char x, unsigned char y, int data)
//{
// unsigned char i,j,k,l,m;
// if(data < 0)
// {
// LED_P6x8Char(x,y,'-');
// data = - data;
// }
//// else
//// {
//// LED_P6x8Char(x,y,'+');
//// }
//
// l = data/10000;
// m= (data%10000)/1000;
// i = (data%1000)/100;
// j = (data%100)/10;
// k = data%10;
//
// unsigned char c;
// c = (l == 0) ? ' ' : (l + 48); LED_P6x8Char(x+6,y,c);
// c = (m == 0 && l == 0) ? ' ' : (m + 48); LED_P6x8Char(x+12,y,c);
// c = (i == 0 && m == 0 && l == 0) ? ' ' : (i + 48); LED_P6x8Char(x+18,y,c);
// c = (j == 0 && i == 0 && m == 0 && l == 0) ? ' ' : (j + 48); LED_P6x8Char(x+24,y,c);
// LED_P6x8Char(x+30,y,k+48);
//}
//
//void LED_PrintValueFP(unsigned char x, unsigned char y, unsigned int data, unsigned char num)
//{
// unsigned char m,i,j,k;
// LED_P6x8Char(x, y, '.');
// m= data/1000;
// i = (data%1000)/100;
// j = (data%100)/10;
// k = data%10;
// switch(num)
// {
// case 1: LED_P6x8Char(x+6,y,k+48);
// break;
// case 2: LED_P6x8Char(x+6,y,j+48);
// LED_P6x8Char(x+12,y,k+48);
// break;
// case 3: LED_P6x8Char(x+6,y,i+48);
// LED_P6x8Char(x+12,y,j+48);
// LED_P6x8Char(x+18,y,k+48);
// break;
// case 4: LED_P6x8Char(x+6,y,m+48);
// LED_P6x8Char(x+12,y,i+48);
// LED_P6x8Char(x+18,y,j+48);
// LED_P6x8Char(x+24,y,k+48);
// break;
// }
//}
//
//
//void LED_PrintValueF(unsigned char x, unsigned char y, float data, unsigned char num)
//{
// unsigned char l,m,i,j,k;
// unsigned char databiti = 6;
// unsigned int tempdataui = 0;
// int tempdataii = (int)data;
// long int tempdatalp = (long int)((data - (int)data)*10000);
//
//
// if(data < 0.0000001) LED_P6x8Char(x, y,'-');
// else LED_P6x8Char(x, y,'+');
// if(tempdataii < 0)tempdataii = - tempdataii;
// tempdataui = tempdataii;
// l = tempdataui/10000;
// m= (tempdataui%10000)/1000;
// i = (tempdataui%1000)/100;
// j = (tempdataui%100)/10;
// k = tempdataui%10;
// if (l != 0)
// {
// LED_P6x8Char(x+6,y,l+48);
// LED_P6x8Char(x+12,y,m+48);
// LED_P6x8Char(x+18,y,i+48);
// LED_P6x8Char(x+24,y,j+48);
// LED_P6x8Char(x+30,y,k+48);
// }
// else if(m != 0)
// {
// databiti = 5;
// LED_P6x8Char(x+6,y,m+48);
// LED_P6x8Char(x+12,y,i+48);
// LED_P6x8Char(x+18,y,j+48);
// LED_P6x8Char(x+24,y,k+48);
// }
// else if(i != 0)
// {
// databiti = 4;
// LED_P6x8Char(x+6,y,i+48);
// LED_P6x8Char(x+12,y,j+48);
// LED_P6x8Char(x+18,y,k+48);
// }
// else if(j != 0)
// {
// databiti = 3;
// LED_P6x8Char(x+6,y,j+48);
// LED_P6x8Char(x+12,y,k+48);
// }
// else
// {
// databiti = 2;
// LED_P6x8Char(x+6,y,k+48);
// }
// if(tempdatalp < 0)tempdatalp = - tempdatalp;
// switch(num)
// {
// case 0: break;
// case 1: LED_PrintValueFP(x + databiti * 6, y, (unsigned int)(tempdatalp / 1000),num);break;
// case 2: LED_PrintValueFP(x + databiti * 6, y, (unsigned int)(tempdatalp / 100),num);break;
// case 3: LED_PrintValueFP(x + databiti * 6, y, (unsigned int)(tempdatalp / 10),num);break;
// case 4: LED_PrintValueFP(x + databiti * 6, y, (unsigned int)(tempdatalp),num);break;
// }
//}
void LED_Cursor(unsigned char cursor_column, unsigned char cursor_row)
{
if(cursor_row != 0)
{
if(cursor_column == 1) LED_Set_Pos(0, cursor_row + 2);
else LED_Set_Pos(80 + (cursor_column - 2)*6, cursor_row + 2);
LED_WrDat(0xFF);
LED_WrDat(0xFF);
LED_WrDat(0xFF);
LED_WrDat(0xFF);
LED_WrDat(0xFF);
LED_WrDat(0xFF);
}
}
#if 0
void setup()
{
LEDPIN_Init();
LED_Init();
}
void loop()
{
LED_P8x16Str(23,0,"welcome to");
LED_P8x16Str(40,2,"Smart");
LED_P8x16Str(20,4,"Prototyping");
}
#endif