845 lines
32 KiB
C

#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <math.h>
#include <main.h>
#include <usart.h>
#include <PontCoopScheduler.h>
#include <mbusComm.h>
#include <loopCtrl.h>
#include <show.h>
#include <logger.h>
#include <frontend.h>
#include <wizHelper.h>
#include <mbusParserExt.h>
#include <mqttComm.h>
#include <oled.h>
#include <ringbuffer.h>
#include <config.h>
#include <mbus/mbus-protocol.h>
static t_configBlock *config;
static const uint8_t MBUS_QUERY_CMD = 0x5b;
// Delay between end of last bit of sent request telegram
// and enabling the frontend for receiving the response.
// Standard says client must wait at least 11 bit times.
// 1 / 2400 * 11 = 4.5e-3ms
static const uint32_t DELAY_AFTER_SENDING = 4; // ms
typedef enum {
MBCR_SUCCESS = 0,
MBCR_ERROR_TIMEOUT,
MBCR_ERROR_LOOP_FAILURE,
MBCR_ERROR_TX_REG_UNACCESSIBLE,
MBCR_ERROR_OUT_OF_MEMORY__FRAME,
MBCR_ERROR_OUT_OF_MEMORY__USERDATA,
MBCR_ERROR_STATE_ENGINE__START1,
MBCR_ERROR_STATE_ENGINE__LENGTH1,
MBCR_ERROR_STATE_ENGINE__LENGTH2,
MBCR_ERROR_STATE_ENGINE__START2,
MBCR_ERROR_STATE_ENGINE__INVALID_CHKSUM,
MBCR_ERROR_STATE_ENGINE__STOP,
MBCR_ERROR_STATE_ENGINE__ILLEGAL_STATE,
MBCR_ERROR_STATE_ENGINE__UNKNOWN
} e_mbusCommResult;
typedef enum {
MBCS_IDLE,
MBCS_SEND,
MBCS_SEND_CONTINUED,
MBCS_SENDING,
MBCS_SENDING_DONE,
MBCS_WAIT_AFTER_SENDING,
MBCS_ENABLE_FRONTEND,
MBCS_START1,
MBCS_LENGTH1,
MBCS_LENGTH2,
MBCS_START2,
MBCS_C_FIELD,
MBCS_A_FIELD,
MBCS_CI_FIELD,
MBCS_USERDATA,
MBCS_CHKSUM,
MBCS_STOP,
MBCS_DONE,
MBCS_TIMEOUT,
MBCS_DISABLE_FRONTEND,
MBCS_ERROR,
MBCS_ERROR_CONTINUED
} e_mbusCommState;
typedef struct {
uint8_t start1;
uint8_t length1;
uint8_t length2;
uint8_t start2;
uint8_t l;
uint8_t c;
uint8_t a;
uint8_t ci;
uint8_t *userdata;
uint8_t chksum;
uint8_t stop;
} t_longframe;
typedef struct {
uint16_t size;
uint16_t readIdx;
uint16_t writeIdx;
uint8_t *buffer;
} linearBuffer_t;
typedef struct {
uint32_t requestId;
e_mbusCommState state;
uint8_t retryCnt;
uint8_t cmd;
uint8_t addr;
linearBuffer_t sendBuffer;
linearBuffer_t receiveBuffer;
uint32_t startTime;
uint8_t receiveCnt;
bool waitForOctet;
e_mbusCommResult result;
t_longframe frame;
t_mbusDevice *device;
} t_mbusCommHandle;
static t_mbusCommHandle mbusCommHandle = { .requestId = 0, .state = MBCS_IDLE, .retryCnt = 0, .cmd = 0, .addr = 0, .startTime = 0, .receiveCnt = 0, .waitForOctet = false };
static t_mbusCommStats mbusCommStats = { .mbusRequestCnt = 0, .mbusErrorCnt = 0, .uartOctetCnt = 0, .uartOverrunCnt = 0, .uartFramingErrCnt = 0, .uartParityErrCnt = 0, .uartNoiseErrCnt = 0 };
static bool mbusCommEnabled = true;
void mbusCommSetStats(t_mbusCommStats stats) {
mbusCommStats = stats;
}
t_mbusCommStats *mbusCommGetStats() {
return &mbusCommStats;
}
static void printError() {
float errorRatio = ((float) mbusCommHandle.device->failures) / ((float) mbusCommHandle.device->requests);
coloredMsg(LOG_YELLOW, false, "mbc pe [%d] Error ratio is %.2f",
mbusCommHandle.requestId,
errorRatio);
mqttPublishf(config->mbusDataTopic, "{\"Status\":\"Error\", \"RequestId\":\"%d\", \"Device\":\"%s\", \"Errors\":\"%d\", \"Requests\":\"%d\", \"ErrorRatio\":\"%.2f\"}",
mbusCommHandle.requestId, mbusCommHandle.device->deviceName,
mbusCommHandle.device->failures, mbusCommHandle.device->requests, errorRatio);
oledPrintf(OLED_SCREEN0, "Err:%d/%d %.2f", mbusCommHandle.device->failures, mbusCommHandle.device->requests, errorRatio);
}
static void parseAndPrintFrame() {
t_longframe *frame = &(mbusCommHandle.frame);
mbus_frame reply;
memset(&reply, 0, sizeof(reply));
//mbus_parse(&reply, buf, len);
reply.start1 = frame->start1;
reply.length1 = frame->length1;
reply.length2 = frame->length2;
reply.start2 = frame->start2;
reply.control = frame->c;
reply.address = frame->a;
reply.control_information = frame->ci;
memcpy(reply.data, frame->userdata, frame->length1 - 3);
reply.checksum = frame->chksum;
reply.stop = frame->stop;
reply.type = MBUS_FRAME_TYPE_LONG;
reply.data_size = frame->length1 - 3;
mbus_frame_data frame_data;
memset(&frame_data, 0, sizeof(frame_data));
int r = mbus_frame_data_parse(&reply, &frame_data);
if (r == 0) {
mbus_data_variable *data_var = &(frame_data.data_var);
if (data_var->header.status) {
coloredMsg(LOG_RED, true, "mbc papf [%d %d] sts: %02x",
mbusCommHandle.requestId, mbusCommHandle.device->address,
data_var->header.status);
}
if ((data_var->header.status & 0x01)) {
coloredMsg(LOG_RED, true, "mbc papf [%d %d] sts: Application Busy",
mbusCommHandle.requestId, mbusCommHandle.device->address);
}
if ((data_var->header.status & 0x02)) {
coloredMsg(LOG_RED, true, "mbc papf [%d %d] sts: Any Application Error",
mbusCommHandle.requestId, mbusCommHandle.device->address);
}
if ((data_var->header.status & 0x04)) {
coloredMsg(LOG_RED, true, "mbc papf [%d %d] sts: Power Low",
mbusCommHandle.requestId, mbusCommHandle.device->address);
}
if ((data_var->header.status & 0x08)) {
coloredMsg(LOG_RED, true, "mbc papf [%d %d] sts: Permanent Error",
mbusCommHandle.requestId, mbusCommHandle.device->address);
}
if ((data_var->header.status & 0x10)) {
coloredMsg(LOG_RED, true, "mbc papf [%d %d] sts: Temporary Error",
mbusCommHandle.requestId, mbusCommHandle.device->address);
}
if ((data_var->header.status & 0x20)) {
coloredMsg(LOG_RED, true, "mbc papf [%d %d] sts: Specific to manufacturer Error 1",
mbusCommHandle.requestId, mbusCommHandle.device->address);
}
if ((data_var->header.status & 0x40)) {
coloredMsg(LOG_RED, true, "mbc papf [%d %d] sts: Specific to manufacturer Error 2",
mbusCommHandle.requestId, mbusCommHandle.device->address);
}
if ((data_var->header.status & 0x80)) {
coloredMsg(LOG_RED, true, "mbc papf [%d %d] sts: Specific to manufacturer Error 3",
mbusCommHandle.requestId, mbusCommHandle.device->address);
}
mbus_data_record *record;
int i;
const char *keys[MBUSDEVICE_NUM_OF_CONSIDEREDFIELDS];
float values[MBUSDEVICE_NUM_OF_CONSIDEREDFIELDS];
uint8_t numOfConsideredFields = 0;
for (record = data_var->record, i = 0;
record;
record = record->next, i++) {
for (uint8_t j = 0; j < MBUSDEVICE_NUM_OF_CONSIDEREDFIELDS; j++) {
if (mbusCommHandle.device->consideredField[j] == i) {
parsedVIB_t parsedVIB = parseVIB(record->drh.vib);
// coloredMsg(LOG_YELLOW, false, "mbc papf [%d] parsed VIB N: %s, U: %s, E: %d",
// mbusCommHandle.requestId,
// parsedVIB.name, parsedVIB.unit, parsedVIB.exponent);
if (parsedVIB.found) {
int32_t value = strtol(mbus_data_record_value(record), NULL, 10);
float weightedValue = ((float) value) * powf(10.0, ((float) parsedVIB.exponent));
coloredMsg(LOG_YELLOW, false, "mbc papf [%d] %s is %.1f %s (%d * 10^%d)",
mbusCommHandle.requestId, parsedVIB.name, weightedValue, parsedVIB.unit,
value, parsedVIB.exponent);
keys[numOfConsideredFields] = parsedVIB.name;
values[numOfConsideredFields] = weightedValue;
numOfConsideredFields++;
} else {
coloredMsg(LOG_YELLOW, false, "mbc papf [%d] L:%d, VIF: 0x%02x U:%s V:%s",
mbusCommHandle.requestId,
mbusCommHandle.device->consideredField[j],
record->drh.vib.vif,
mbus_data_record_unit(record),
mbus_data_record_value(record));
}
}
}
}
float errorRatio = ((float) mbusCommHandle.device->failures) / ((float) mbusCommHandle.device->requests);
coloredMsg(LOG_YELLOW, false, "mbc papf [%d] Error ratio is %.2f",
mbusCommHandle.requestId,
errorRatio);
if (numOfConsideredFields == 1) {
mqttPublishf(config->mbusDataTopic, "{\"Status\":\"Ok\", \"RequestId\":\"%d\", \"Device\":\"%s\", \"Errors\":\"%d\", \"Requests\":\"%d\", \"ErrorRatio\":\"%.2f\", " \
"\"Values\":{\"%s\":\"%.1f\"}}",
mbusCommHandle.requestId, mbusCommHandle.device->deviceName,
mbusCommHandle.device->failures, mbusCommHandle.device->requests, errorRatio,
keys[0], values[0]);
} else if (numOfConsideredFields == 2) {
mqttPublishf(config->mbusDataTopic, "{\"Status\":\"Ok\", \"RequestId\":\"%d\", \"Device\":\"%s\", \"Errors\":\"%d\", \"Requests\":\"%d\", \"ErrorRatio\":\"%.2f\", " \
"\"Values\":{\"%s\":\"%.1f\", \"%s\":\"%.1f\"}}",
mbusCommHandle.requestId, mbusCommHandle.device->deviceName,
mbusCommHandle.device->failures, mbusCommHandle.device->requests, errorRatio,
keys[0], values[0], keys[1], values[1]);
} else if (numOfConsideredFields == 3) {
mqttPublishf(config->mbusDataTopic, "{\"Status\":\"Ok\", \"RequestId\":\"%d\", \"Device\":\"%s\", \"Errors\":\"%d\", \"Requests\":\"%d\", \"ErrorRatio\":\"%.2f\", " \
"\"Values\":{\"%s\":\"%.1f\", \"%s\":\"%.1f\", \"%s\":\"%.1f\"}}",
mbusCommHandle.requestId, mbusCommHandle.device->deviceName,
mbusCommHandle.device->failures, mbusCommHandle.device->requests, errorRatio,
keys[0], values[0], keys[1], values[1], keys[2], values[2]);
} else if (numOfConsideredFields == 4) {
mqttPublishf(config->mbusDataTopic, "{\"Status\":\"Ok\", \"RequestId\":\"%d\", \"Device\":\"%s\", \"Errors\":\"%d\", \"Requests\":\"%d\", \"ErrorRatio\":\"%.2f\", " \
"\"Values\":{\"%s\":\"%.1f\", \"%s\":\"%.1f\", \"%s\":\"%.1f\", \"%s\":\"%.1f\"}}",
mbusCommHandle.requestId, mbusCommHandle.device->deviceName,
mbusCommHandle.device->failures, mbusCommHandle.device->requests, errorRatio,
keys[0], values[0], keys[1], values[1], keys[2], values[2], keys[3], values[3]);
}
oledPrintf(OLED_SCREEN0, "Ok:%d/%d %.2f", mbusCommHandle.device->failures, mbusCommHandle.device->requests, errorRatio);
mbus_data_record_free(data_var->record);
} else {
coloredMsg(LOG_RED, true, "mbc papf [%d %d] err: unable to parse frame",
mbusCommHandle.requestId, mbusCommHandle.device->address);
}
}
void mbusCommISR() {
uint32_t isrflags = READ_REG(mbusUart.Instance->SR);
uint32_t cr1its = READ_REG(mbusUart.Instance->CR1);
// RXNEIE doesn't need to be considered since it is always on and more over the
// RXNE flag is cleared by reading the DR, which is done in any case
if (((isrflags & USART_SR_RXNE) != RESET) || ((isrflags & (USART_SR_ORE | USART_SR_FE | USART_SR_PE | USART_SR_NE)) != RESET)) {
// Error flags are only valid together with the RX flag.
// They will be cleared by reading SR (already done above) followed by reading DR (below).
bool errorFound = false;
if ((isrflags & USART_SR_ORE) != RESET) {
mbusCommStats.uartOverrunCnt += 1;
errorFound = true;
}
if ((isrflags & USART_SR_FE) != RESET) {
mbusCommStats.uartFramingErrCnt += 1;
errorFound = true;
}
if ((isrflags & USART_SR_PE) != RESET) {
mbusCommStats.uartParityErrCnt += 1;
errorFound = true;
}
if ((isrflags & USART_SR_NE) != RESET) {
mbusCommStats.uartNoiseErrCnt += 1;
errorFound = true;
}
mbusCommStats.uartOctetCnt += 1;
// it is required to read the DR in any case here, not only when the buffer has space
// otherwise the interrupt flag won't be reset, particularly important in case of ORE
uint8_t data = (uint8_t)(mbusUart.Instance->DR & (uint8_t)0x00FF);
if ((! errorFound) &&
(mbusCommHandle.receiveBuffer.writeIdx < mbusCommHandle.receiveBuffer.size)) {
mbusCommHandle.receiveBuffer.buffer[mbusCommHandle.receiveBuffer.writeIdx] = data;
mbusCommHandle.receiveBuffer.writeIdx += 1;
}
}
// TXEIE needs to be considered since TXE is cleared by writing the DR, which isn't done
// after the last octet sent
if (((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET)) {
if (mbusCommHandle.sendBuffer.readIdx < mbusCommHandle.sendBuffer.writeIdx) {
mbusUart.Instance->DR = mbusCommHandle.sendBuffer.buffer[mbusCommHandle.sendBuffer.readIdx];
mbusCommHandle.sendBuffer.readIdx += 1;
if (mbusCommHandle.sendBuffer.readIdx == mbusCommHandle.sendBuffer.writeIdx) {
__HAL_UART_DISABLE_IT(&mbusUart, UART_IT_TXE);
__HAL_UART_ENABLE_IT(&mbusUart, UART_IT_TC);
}
}
}
// advance the state for the engine only when the last octet is shifted out completely
if (((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET)) {
__HAL_UART_DISABLE_IT(&mbusUart, UART_IT_TC);
mbusCommHandle.state = MBCS_SENDING_DONE;
}
}
void mbusCommExec() {
static uint8_t userdataIdx = 0;
static uint8_t calculatedChksum = 0;
uint8_t receivedOctet = 0;
static uint32_t delayAfterSendStartTime = 0;
if ((mbusCommHandle.startTime != 0) && ((mbusCommHandle.startTime + 2500) < HAL_GetTick())) {
mbusCommHandle.state = MBCS_TIMEOUT;
} else if (mbusCommHandle.waitForOctet) {
if (mbusCommHandle.receiveBuffer.readIdx >= mbusCommHandle.receiveBuffer.writeIdx) {
return; // no data available, wait
}
receivedOctet = mbusCommHandle.receiveBuffer.buffer[mbusCommHandle.receiveBuffer.readIdx];
mbusCommHandle.receiveBuffer.readIdx += 1;
mbusCommHandle.waitForOctet = false;
}
switch (mbusCommHandle.state) {
case MBCS_IDLE:
// coloredMsg(LOG_YELLOW, false, "mbc hre [%d] state IDLE", mbusCommHandle.requestId);
break;
case MBCS_SEND:
// coloredMsg(LOG_YELLOW, false, "mbc hre [%d] state SEND", mbusCommHandle.requestId);
mbusCommHandle.sendBuffer.buffer[0] = 0x10;
mbusCommHandle.sendBuffer.buffer[1] = mbusCommHandle.cmd;
mbusCommHandle.sendBuffer.buffer[2] = mbusCommHandle.addr;
mbusCommHandle.sendBuffer.buffer[3] = mbusCommHandle.cmd + mbusCommHandle.addr; // checksum
mbusCommHandle.sendBuffer.buffer[4] = 0x16;
mbusCommHandle.sendBuffer.readIdx = 0;
mbusCommHandle.sendBuffer.writeIdx = 5;
mbusCommHandle.state = MBCS_SEND_CONTINUED;
// no break !!
case MBCS_SEND_CONTINUED:
// coloredMsg(LOG_YELLOW, false, "mbc hre [%d] state SEND_CONTINUED", mbusCommHandle.requestId);
show(LED_RED, OFF);
if (! loopActive) {
coloredMsg(LOG_YELLOW, true, "mbc hre [%d %d] enabling loop, try %d",
mbusCommHandle.requestId, mbusCommHandle.device->address,
mbusCommHandle.retryCnt);
mbusCommHandle.retryCnt++;
loopEnable();
} else {
mbusCommHandle.retryCnt = 0;
// enable transmitter interrupt
//coloredMsg(LOG_YELLOW, false, "mbc hre [%d] enable transmitter interrupt", mbusCommHandle.requestId);
__HAL_UART_ENABLE_IT(&mbusUart, UART_IT_TXE);
mbusCommHandle.state = MBCS_SENDING;
}
break;
case MBCS_SENDING:
// transition from here to MBCS_SENDING_DONE is done by TX ISR
break;
case MBCS_SENDING_DONE:
//coloredMsg(LOG_YELLOW, false, "mbc hre [%d] state SENDING_DONE", mbusCommHandle.requestId);
delayAfterSendStartTime = HAL_GetTick();
mbusCommHandle.state = MBCS_WAIT_AFTER_SENDING;
break;
case MBCS_WAIT_AFTER_SENDING:
// Avoids switching on the frontend while there is still noise from sending on the loop
// Make sure to wait not too long otherwise the beginning of the response is missed
if ((delayAfterSendStartTime + DELAY_AFTER_SENDING) < HAL_GetTick()) {
mbusCommHandle.state = MBCS_ENABLE_FRONTEND;
}
break;
case MBCS_ENABLE_FRONTEND:
// coloredMsg(LOG_YELLOW, false, "mbc hre [%d] state ENABLE_FRONTEND", mbusCommHandle.requestId);
frontendEnable();
calculatedChksum = 0;
userdataIdx = 0;
mbusCommHandle.receiveBuffer.readIdx = 0;
mbusCommHandle.receiveBuffer.writeIdx = 0;
mbusCommHandle.waitForOctet = true; // start receiver
mbusCommHandle.startTime = HAL_GetTick(); // start receiver timeout
mbusCommHandle.state = MBCS_START1;
break;
case MBCS_START1:
if (receivedOctet == 0x68) {
mbusCommHandle.frame.start1 = receivedOctet;
mbusCommHandle.waitForOctet = true;
mbusCommHandle.state = MBCS_LENGTH1;
} else {
coloredMsg(LOG_RED, true, "mbc hre [%d %d] err: invalid start1 symbol %02x",
mbusCommHandle.requestId, mbusCommHandle.device->address,
receivedOctet);
mbusCommHandle.result = MBCR_ERROR_STATE_ENGINE__START1;
mbusCommHandle.state = MBCS_ERROR;
}
break;
case MBCS_LENGTH1:
if (receivedOctet <= 3) {
coloredMsg(LOG_RED, true, "mbc hre [%d %d] err: length to small %02x",
mbusCommHandle.requestId, mbusCommHandle.device->address,
receivedOctet);
mbusCommHandle.result = MBCR_ERROR_STATE_ENGINE__LENGTH1;
mbusCommHandle.state = MBCS_ERROR;
} else {
mbusCommHandle.frame.length1 = receivedOctet;
mbusCommHandle.frame.userdata = (uint8_t*) malloc(mbusCommHandle.frame.length1 - 3);
if (! mbusCommHandle.frame.userdata) {
coloredMsg(LOG_RED, true, "mbc hre [%d %d] err: unable to allocate memory for userdata",
mbusCommHandle.requestId, mbusCommHandle.device->address);
mbusCommHandle.result = MBCR_ERROR_OUT_OF_MEMORY__USERDATA;
mbusCommHandle.state = MBCS_ERROR;
} else {
mbusCommHandle.waitForOctet = true;
mbusCommHandle.state = MBCS_LENGTH2;
}
}
break;
case MBCS_LENGTH2:
if (mbusCommHandle.frame.length1 != receivedOctet) {
coloredMsg(LOG_RED, true, "mbc hre [%d %d] err: invalid length2 %02x vs. %02x",
mbusCommHandle.requestId, mbusCommHandle.device->address,
mbusCommHandle.frame.length1, receivedOctet);
mbusCommHandle.result = MBCR_ERROR_STATE_ENGINE__LENGTH2;
mbusCommHandle.state = MBCS_ERROR;
} else {
mbusCommHandle.frame.length2 = receivedOctet;
mbusCommHandle.waitForOctet = true;
mbusCommHandle.state = MBCS_START2;
}
break;
case MBCS_START2:
if (receivedOctet == 0x68) {
mbusCommHandle.frame.start2 = receivedOctet;
mbusCommHandle.waitForOctet = true;
mbusCommHandle.state = MBCS_C_FIELD;
} else {
coloredMsg(LOG_RED, true, "mbc hre [%d %d] err: invalid start2 symbol %02x",
mbusCommHandle.requestId, mbusCommHandle.device->address, receivedOctet);
mbusCommHandle.result = MBCR_ERROR_STATE_ENGINE__START2;
mbusCommHandle.state = MBCS_ERROR;
}
break;
case MBCS_C_FIELD:
mbusCommHandle.frame.c = receivedOctet;
calculatedChksum += receivedOctet;
mbusCommHandle.waitForOctet = true;
mbusCommHandle.state = MBCS_A_FIELD;
break;
case MBCS_A_FIELD:
mbusCommHandle.frame.a = receivedOctet;
calculatedChksum += receivedOctet;
mbusCommHandle.waitForOctet = true;
mbusCommHandle.state = MBCS_CI_FIELD;
break;
case MBCS_CI_FIELD:
mbusCommHandle.frame.ci = receivedOctet;
calculatedChksum += receivedOctet;
mbusCommHandle.waitForOctet = true;
mbusCommHandle.state = MBCS_USERDATA;
break;
case MBCS_USERDATA:
mbusCommHandle.frame.userdata[userdataIdx] = receivedOctet;
calculatedChksum += receivedOctet;
userdataIdx++;
mbusCommHandle.waitForOctet = true;
if (userdataIdx == (mbusCommHandle.frame.length1 - 3)) {
mbusCommHandle.state = MBCS_CHKSUM;
}
break;
case MBCS_CHKSUM:
if (receivedOctet != calculatedChksum) {
coloredMsg(LOG_RED, true, "mbc hre [%d %d] err: invalid checksum %02x vs %02x",
mbusCommHandle.requestId, mbusCommHandle.device->address,
calculatedChksum, receivedOctet);
mbusCommHandle.result = MBCR_ERROR_STATE_ENGINE__INVALID_CHKSUM;
mbusCommHandle.state = MBCS_ERROR;
} else {
mbusCommHandle.frame.chksum = receivedOctet;
mbusCommHandle.waitForOctet = true;
mbusCommHandle.state = MBCS_STOP;
}
break;
case MBCS_STOP:
if (receivedOctet == 0x16) {
mbusCommHandle.frame.stop = receivedOctet;
mbusCommHandle.state = MBCS_DONE;
} else {
coloredMsg(LOG_RED, true, "mbc hre [%d %d] err: invalid stop symbol %02x",
mbusCommHandle.requestId, mbusCommHandle.device->address, receivedOctet);
mbusCommHandle.result = MBCR_ERROR_STATE_ENGINE__STOP;
mbusCommHandle.state = MBCS_ERROR;
}
break;
case MBCS_DONE:
// coloredMsg(LOG_YELLOW, false, "mbc hre [%d] state DONE", mbusCommHandle.requestId);
parseAndPrintFrame();
if (mbusCommHandle.frame.userdata != NULL) {
free(mbusCommHandle.frame.userdata);
mbusCommHandle.frame.userdata = NULL;
}
mbusCommHandle.result = MBCR_SUCCESS;
mbusCommHandle.state = MBCS_DISABLE_FRONTEND;
break;
case MBCS_ERROR:
// coloredMsg(LOG_RED, false, "mbc hre [%d] state ERROR", mbusCommHandle.requestId);
coloredMsg(LOG_RED, true, "mbc hre [%d %d] error", mbusCommHandle.requestId, mbusCommHandle.device->address);
show(LED_RED, ON);
// disable frontend immediately in case of error since no more data in relevant
// this avoids strange noise on RX line/led
frontendDisable();
mbusCommHandle.state = MBCS_ERROR_CONTINUED;
// no break
case MBCS_ERROR_CONTINUED:
// every error will be collected by a timeout to receive all data still on the wire
// to avoid leaking old data in responses for new requests
break;
case MBCS_TIMEOUT:
// coloredMsg(LOG_RED, false, "mbc hre [%d] state TIMEOUT", mbusCommHandle.requestId);
coloredMsg(LOG_RED, true, "mbc hre [%d %d] timeout", mbusCommHandle.requestId, mbusCommHandle.device->address);
mbusCommStats.mbusErrorCnt += 1;
mbusCommHandle.device->failures += 1;
mbusCommHandle.startTime = 0; // disable timeout
mbusCommHandle.waitForOctet = false; // disable receiver
printError();
if (mbusCommHandle.frame.userdata != NULL) {
free(mbusCommHandle.frame.userdata);
mbusCommHandle.frame.userdata = NULL;
}
// no break
case MBCS_DISABLE_FRONTEND:
// coloredMsg(LOG_YELLOW, false, "mbc hre [%d] state DISABLE_FRONTEND", mbusCommHandle.requestId);
frontendDisable();
mbusCommHandle.startTime = 0; // disable timeout
mbusCommHandle.state = MBCS_IDLE;
break;
default:
mbusCommHandle.state = MBCS_IDLE;
break;
}
}
void mbusCommEnable(bool enable) {
mbusCommEnabled = enable;
}
static e_mbusCommRequestResult mbusCommRequest(t_mbusDevice *mbusDevice) {
e_mbusCommRequestResult res = MBCRR_BUSY;
if (mbusCommEnabled) {
if (mbusCommHandle.state == MBCS_IDLE) {
mbusCommHandle.requestId += 1;
mbusCommHandle.state = MBCS_SEND;
mbusCommHandle.retryCnt = 0;
mbusCommHandle.cmd = MBUS_QUERY_CMD;
mbusCommHandle.addr = mbusDevice->address;
mbusCommHandle.device = mbusDevice;
mbusDevice->requests += 1;
coloredMsg(LOG_YELLOW, false, "mbc mcr [%d] new request %s (%d)",
mbusCommHandle.requestId,
mbusDevice->deviceName, mbusDevice->address);
oledPrint(OLED_SCREEN0, mbusDevice->deviceName);
res = MBCRR_TRIGGERED;
mbusCommStats.mbusRequestCnt += 1;
}
} else {
res = MBCRR_DISABLED;
}
return res;
}
#define PERIOD 10
static uint8_t numOfDevices = 0;
static t_mbusDevice *devices = NULL;
void mbusCommAddDevice(t_deviceBlock *deviceBlock) {
devices = (t_mbusDevice*) realloc((void*) devices, (numOfDevices + 1) * sizeof(t_mbusDevice));
strcpy(devices[numOfDevices].deviceName, deviceBlock->deviceName);
devices[numOfDevices].address = deviceBlock->address;
memcpy(devices[numOfDevices].consideredField, deviceBlock->consideredField, sizeof(deviceBlock->consideredField));
devices[numOfDevices].period = deviceBlock->period;
devices[numOfDevices].requests = 0;
devices[numOfDevices].failures = 0;
devices[numOfDevices].delay = 0;
devices[numOfDevices].waiting = false;
devices[numOfDevices].active = true;
coloredMsg(LOG_YELLOW, false, "mbc mbcad device added %d %s %d", numOfDevices, devices[numOfDevices].deviceName, devices[numOfDevices].address);
numOfDevices += 1;
}
/*
static t_mbusDevice devices[] = {
{
.deviceName = "Total",
.address = 80,
.consideredField = { 0, 17, -1, -1 },
.requests = 0,
.failures = 0,
.period = PERIOD,
.delay = 0,
.waiting = false,
.active = true
},
{
.deviceName = "Computer",
.address = 85,
.consideredField = { 0, 4, 2, 3 },
.requests = 0,
.failures = 0,
.period = PERIOD,
.delay = 0,
.waiting = false,
.active = true
},
{
.deviceName = "Dryer",
.address = 81,
.consideredField = { 0, 4, 2, 3 },
.requests = 0,
.failures = 0,
.period = PERIOD,
.delay = 0,
.waiting = false,
.active = true
},
{
.deviceName = "Laundry",
.address = 82,
.consideredField = { 0, 4, 2, 3 },
.requests = 0,
.failures = 0,
.period = PERIOD,
.delay = 0,
.waiting = false,
.active = true
},
{
.deviceName = "Dishwasher",
.address = 83,
.consideredField = { 0, 4, 2, 3 },
.requests = 0,
.failures = 0,
.period = PERIOD,
.delay = 0,
.waiting = false,
.active = true
},
{
.deviceName = "Light",
.address = 84,
.consideredField = { 0, 4, 2, 3 },
.requests = 0,
.failures = 0,
.period = PERIOD,
.delay = 0,
.waiting = false,
.active = true
},
{
.deviceName = "Freezer",
.address = 86,
.consideredField = { 0, 4, 2, 3 },
.requests = 0,
.failures = 0,
.period = PERIOD,
.delay = 0,
.waiting = false,
.active = true
},
{
.deviceName = "Fridge",
.address = 87,
.consideredField = { 0, 4, 2, 3 },
.requests = 0,
.failures = 0,
.period = PERIOD,
.delay = 0,
.waiting = false,
.active = true
}
};
*/
static void triggerMBusRequest(void *handle) {
static uint8_t deviceIndex = 0;
if (devices[deviceIndex].waiting) {
e_mbusCommRequestResult r = mbusCommRequest(&(devices[deviceIndex]));
if (r == MBCRR_TRIGGERED) {
devices[deviceIndex].waiting = false;
deviceIndex++;
}
} else {
deviceIndex++;
}
if (deviceIndex >= numOfDevices) {
deviceIndex = 0;
}
}
static void mbusCommScheduler(void *handle) {
static uint8_t state = 0;
switch (state) {
case 0:
if (isNetworkAvailable()) {
coloredMsg(LOG_YELLOW, true, "mbc mcs activate scheduler by network");
schAdd(triggerMBusRequest, NULL, 0, 100);
state = 2;
}
break;
case 1:
if (mbusCommEnabled) {
coloredMsg(LOG_YELLOW, true, "mbc mcs activate scheduler by request");
schAdd(triggerMBusRequest, NULL, 0, 100);
state = 2;
}
break;
case 2:
if (! isNetworkAvailable()) {
coloredMsg(LOG_YELLOW, true, "mbc mcs deactivate scheduler by network");
schDel(triggerMBusRequest, NULL);
loopDisable();
state = 0;
}
if (! mbusCommEnabled) {
coloredMsg(LOG_YELLOW, true, "mbc mcs deactivate scheduler by request");
schDel(triggerMBusRequest, NULL);
loopDisable();
state = 1;
}
for (uint8_t i = 0; i < numOfDevices; i++) {
if (devices[i].active) {
devices[i].delay -= 1;
if (devices[i].delay <= 0) {
devices[i].delay = devices[i].period;
devices[i].waiting = true;
coloredMsg(LOG_YELLOW, false, "mbc mcs scheduled: %s", devices[i].deviceName);
}
}
}
// FIXME
// state = 3;
break;
case 3:
coloredMsg(LOG_YELLOW, false, "mbc mcs waiting for godot");
state = 4;
// no break
case 4:
break;
}
}
void mbusCommInit() {
config = getConfig();
coloredMsg(LOG_GREEN, true, "mbc mci initializing Meterbus communication");
// enable receive interrupts
// __HAL_UART_ENABLE_IT(&mbusUart, UART_IT_PE);
// __HAL_UART_ENABLE_IT(&mbusUart, UART_IT_ERR);
__HAL_UART_ENABLE_IT(&mbusUart, UART_IT_RXNE);
// init buffers
mbusCommHandle.receiveBuffer.size = 256;
mbusCommHandle.receiveBuffer.buffer = (uint8_t*) malloc(mbusCommHandle.receiveBuffer.size);
mbusCommHandle.receiveBuffer.readIdx = 0;
mbusCommHandle.receiveBuffer.writeIdx = 0;
mbusCommHandle.sendBuffer.size = 8;
mbusCommHandle.sendBuffer.buffer = (uint8_t*) malloc(mbusCommHandle.sendBuffer.size);
mbusCommHandle.sendBuffer.readIdx = 0;
mbusCommHandle.sendBuffer.writeIdx = 0;
// FIXME
schAdd(mbusCommScheduler, NULL, 0, 1000);
}