introduce direction and stop function, some refactoring

This commit is contained in:
Wolfgang Hottgenroth 2016-10-27 13:28:55 +02:00
parent 58e8c6b45c
commit d79f13f295
3 changed files with 60 additions and 33 deletions

View File

@ -20,12 +20,12 @@ extern TIM_HandleTypeDef htim5;
#define NUM_OF_SINE_SLOT 30 #define NUM_OF_SINE_SLOT 30
uint16_t freqOut = 100;
const uint32_t FREQ_IN = 1E6; const uint32_t FREQ_IN = 1E6;
const float PI = 3.14159; const float PI = 3.14159;
float slotAngle = 180.0 / NUM_OF_SINE_SLOT; float slotAngle = 180.0 / NUM_OF_SINE_SLOT;
float sineValues[NUM_OF_SINE_SLOT]; float sineValues[NUM_OF_SINE_SLOT];
uint16_t IV[NUM_OF_SINE_SLOT]; uint16_t IV[NUM_OF_SINE_SLOT];
volatile uint32_t timer1Cnt; volatile uint32_t timer1Cnt;
typedef struct { typedef struct {
@ -33,6 +33,8 @@ typedef struct {
bool running; bool running;
GPIO_TypeDef *bridgePolarityPort; GPIO_TypeDef *bridgePolarityPort;
uint16_t bridgePolarityPin; uint16_t bridgePolarityPin;
GPIO_TypeDef *startMarkPort;
uint16_t startMarkPin;
IRQn_Type irqType; IRQn_Type irqType;
TIM_HandleTypeDef *handle; TIM_HandleTypeDef *handle;
uint32_t channel; uint32_t channel;
@ -40,6 +42,7 @@ typedef struct {
#define NUM_OF_TIMER 3 #define NUM_OF_TIMER 3
volatile timerSupport_t timerSupport[NUM_OF_TIMER]; volatile timerSupport_t timerSupport[NUM_OF_TIMER];
volatile uint8_t phaseOrder[NUM_OF_TIMER];
@ -56,6 +59,9 @@ void inverterBegin() {
timerSupport[0].bridgePolarityPin = BridgePolarity0_Pin; timerSupport[0].bridgePolarityPin = BridgePolarity0_Pin;
timerSupport[0].irqType = TIM2_IRQn; timerSupport[0].irqType = TIM2_IRQn;
timerSupport[0].channel = TIM_CHANNEL_1; timerSupport[0].channel = TIM_CHANNEL_1;
timerSupport[0].startMarkPort = LED2_PIN_GPIO_Port;
timerSupport[0].startMarkPin = LED2_PIN_Pin;
timerSupport[1].handle = &htim5; timerSupport[1].handle = &htim5;
timerSupport[1].running = false; timerSupport[1].running = false;
timerSupport[1].slotCnt = 0; timerSupport[1].slotCnt = 0;
@ -63,6 +69,9 @@ void inverterBegin() {
timerSupport[1].bridgePolarityPin = BridgePolarity1_Pin; timerSupport[1].bridgePolarityPin = BridgePolarity1_Pin;
timerSupport[1].irqType = TIM5_IRQn; timerSupport[1].irqType = TIM5_IRQn;
timerSupport[1].channel = TIM_CHANNEL_2; timerSupport[1].channel = TIM_CHANNEL_2;
timerSupport[1].startMarkPort = LED3_PIN_GPIO_Port;
timerSupport[1].startMarkPin = LED3_PIN_Pin;
timerSupport[2].handle = &htim4; timerSupport[2].handle = &htim4;
timerSupport[2].running = false; timerSupport[2].running = false;
timerSupport[2].slotCnt = 0; timerSupport[2].slotCnt = 0;
@ -70,38 +79,66 @@ void inverterBegin() {
timerSupport[2].bridgePolarityPin = BridgePolarity2_Pin; timerSupport[2].bridgePolarityPin = BridgePolarity2_Pin;
timerSupport[2].irqType = TIM4_IRQn; timerSupport[2].irqType = TIM4_IRQn;
timerSupport[2].channel = TIM_CHANNEL_1; timerSupport[2].channel = TIM_CHANNEL_1;
timerSupport[2].startMarkPort = LED4_PIN_GPIO_Port;
timerSupport[2].startMarkPin = LED4_PIN_Pin;
} }
void inverterSetFrequency(uint8_t freqOut) { void inverterStart(uint8_t freqOut, direction_t direction) {
inverterStop();
uint16_t slotWidth = (FREQ_IN / (freqOut * NUM_OF_SINE_SLOT * 4)); uint16_t slotWidth = (FREQ_IN / (freqOut * NUM_OF_SINE_SLOT * 4));
for (uint8_t i = 0; i < NUM_OF_SINE_SLOT; i++) { for (uint8_t i = 0; i < NUM_OF_SINE_SLOT; i++) {
IV[i] = (uint16_t)(sineValues[i] * 0.9 * slotWidth); IV[i] = (uint16_t)(sineValues[i] * 0.9 * slotWidth);
} }
HAL_TIM_Base_Stop(&htim1); if (direction == CLOCKWISE) {
__HAL_TIM_DISABLE_IT(&htim1, TIM_IT_UPDATE); phaseOrder[0] = 0;
phaseOrder[1] = 1;
phaseOrder[2] = 2;
} else {
phaseOrder[0] = 0;
phaseOrder[1] = 2;
phaseOrder[2] = 1;
}
for (uint8_t i = 0; i < NUM_OF_TIMER; i++){ for (uint8_t i = 0; i < NUM_OF_TIMER; i++){
HAL_TIM_PWM_Stop_DMA(timerSupport[i].handle, timerSupport[i].channel);
__HAL_TIM_DISABLE_IT(timerSupport[i].handle, TIM_IT_UPDATE);
timerSupport[i].slotCnt = 0; timerSupport[i].slotCnt = 0;
timerSupport[i].running = false; timerSupport[i].running = false;
HAL_GPIO_WritePin(timerSupport[i].bridgePolarityPort, timerSupport[i].bridgePolarityPin, GPIO_PIN_RESET); HAL_GPIO_WritePin(timerSupport[i].bridgePolarityPort, timerSupport[i].bridgePolarityPin, GPIO_PIN_RESET);
__HAL_TIM_SET_AUTORELOAD(timerSupport[i].handle, slotWidth); __HAL_TIM_SET_AUTORELOAD(timerSupport[i].handle, slotWidth);
} }
HAL_GPIO_WritePin(LED0_GPIO_Port, LED0_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_RESET);
timer1Cnt = 0; timer1Cnt = 0;
__HAL_TIM_SET_AUTORELOAD(&htim1, slotWidth); __HAL_TIM_SET_AUTORELOAD(&htim1, slotWidth);
HAL_TIM_Base_Start_IT(&htim1); HAL_TIM_Base_Start_IT(&htim1);
__HAL_TIM_ENABLE_IT(&htim1, TIM_IT_UPDATE); __HAL_TIM_ENABLE_IT(&htim1, TIM_IT_UPDATE);
} }
void inverterStop() {
HAL_TIM_Base_Stop(&htim1);
__HAL_TIM_DISABLE_IT(&htim1, TIM_IT_UPDATE);
for (uint8_t i = 0; i < NUM_OF_TIMER; i++){
HAL_TIM_PWM_Stop_DMA(timerSupport[i].handle, timerSupport[i].channel);
__HAL_TIM_DISABLE_IT(timerSupport[i].handle, TIM_IT_UPDATE);
HAL_GPIO_WritePin(timerSupport[i].startMarkPort, timerSupport[i].startMarkPin, GPIO_PIN_RESET);
}
}
static void startPhase(uint8_t phaseIdx) {
uint8_t timerIdx = phaseOrder[phaseIdx];
if (! timerSupport[timerIdx].running) {
HAL_GPIO_WritePin(timerSupport[timerIdx].startMarkPort,
timerSupport[timerIdx].startMarkPin, GPIO_PIN_SET);
HAL_TIM_PWM_Start_DMA(timerSupport[timerIdx].handle, timerSupport[timerIdx].channel,
(uint32_t*)IV, NUM_OF_SINE_SLOT);
__HAL_TIM_ENABLE_IT(timerSupport[timerIdx].handle, TIM_IT_UPDATE);
timerSupport[timerIdx].running = true;
}
}
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
for (uint8_t i = 0; i < NUM_OF_TIMER; i++) { for (uint8_t i = 0; i < NUM_OF_TIMER; i++) {
if (htim == timerSupport[i].handle) { if (htim == timerSupport[i].handle) {
@ -112,29 +149,16 @@ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
} }
} }
} }
if (htim == &htim1) { if (htim == &htim1) {
HAL_GPIO_TogglePin(Sync_GPIO_Port, Sync_Pin); HAL_GPIO_TogglePin(Sync_GPIO_Port, Sync_Pin);
if (timer1Cnt == 0) { if (timer1Cnt == 0) {
if (! timerSupport[0].running) { startPhase(0);
HAL_GPIO_WritePin(LED0_GPIO_Port, LED0_Pin, GPIO_PIN_SET);
timerSupport[0].running = true;
__HAL_TIM_ENABLE_IT(timerSupport[0].handle, TIM_IT_UPDATE);
HAL_TIM_PWM_Start_DMA(timerSupport[0].handle, timerSupport[0].channel, (uint32_t*)IV, NUM_OF_SINE_SLOT);
}
} else if (timer1Cnt == ((NUM_OF_SINE_SLOT * 2) / 3)) { } else if (timer1Cnt == ((NUM_OF_SINE_SLOT * 2) / 3)) {
if (! timerSupport[1].running) { startPhase(1);
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_SET);
timerSupport[1].running = true;
HAL_TIM_PWM_Start_DMA(timerSupport[1].handle, timerSupport[1].channel, (uint32_t*)IV, NUM_OF_SINE_SLOT);
__HAL_TIM_ENABLE_IT(timerSupport[1].handle, TIM_IT_UPDATE);
}
} else if (timer1Cnt == ((NUM_OF_SINE_SLOT * 2) * 2 / 3)) { } else if (timer1Cnt == ((NUM_OF_SINE_SLOT * 2) * 2 / 3)) {
if (! timerSupport[2].running) { startPhase(2);
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET);
timerSupport[2].running = true;
HAL_TIM_PWM_Start_DMA(timerSupport[2].handle, timerSupport[2].channel, (uint32_t*)IV, NUM_OF_SINE_SLOT);
__HAL_TIM_ENABLE_IT(timerSupport[2].handle, TIM_IT_UPDATE);
}
} }
timer1Cnt++; timer1Cnt++;

View File

@ -9,8 +9,11 @@
#define INVERTER_H_ #define INVERTER_H_
typedef enum { CLOCKWISE, COUNTERCLOCKWISE } direction_t;
void inverterBegin(); void inverterBegin();
void inverterSetFrequency(uint8_t freqOut); void inverterStart(uint8_t freqOut, direction_t direction);
void inverterStop();
#endif /* INVERTER_H_ */ #endif /* INVERTER_H_ */

View File

@ -45,16 +45,16 @@ void my_errorHandler() {
} }
void testSwitchFrequency1(void *handle) { void testSwitchFrequency1(void *handle) {
inverterSetFrequency(100); inverterStart(100, CLOCKWISE);
} }
void testSwitchFrequency2(void *handle) { void testSwitchFrequency2(void *handle) {
inverterSetFrequency(50); inverterStart(50, CLOCKWISE);
} }
void my_setup_2() { void my_setup_2() {
inverterBegin(); inverterBegin();
inverterSetFrequency(50); inverterStart(50, CLOCKWISE);
schAdd(testSwitchFrequency1, NULL, 5000, 0); schAdd(testSwitchFrequency1, NULL, 5000, 0);
schAdd(testSwitchFrequency2, NULL, 10000, 0); schAdd(testSwitchFrequency2, NULL, 10000, 0);
schAdd(testSwitchFrequency1, NULL, 15000, 0); schAdd(testSwitchFrequency1, NULL, 15000, 0);