rules initial

This commit is contained in:
2025-11-11 16:38:41 +01:00
parent 7928bc596f
commit 2e2963488b
13 changed files with 1858 additions and 97 deletions

53
apps/rules/Dockerfile Normal file
View File

@@ -0,0 +1,53 @@
# Rules Engine Dockerfile
# Event-driven automation rules processor with MQTT and Redis
FROM python:3.14-alpine
# Prevent Python from writing .pyc files and enable unbuffered output
ENV PYTHONDONTWRITEBYTECODE=1 \
PYTHONUNBUFFERED=1 \
RULES_CONFIG=config/rules.yaml \
MQTT_BROKER=172.16.2.16 \
MQTT_PORT=1883 \
REDIS_HOST=localhost \
REDIS_PORT=6379 \
REDIS_DB=8 \
LOG_LEVEL=INFO
# Create non-root user
RUN addgroup -g 10001 -S app && \
adduser -u 10001 -S app -G app
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apk add --no-cache \
gcc \
musl-dev \
linux-headers
# Install Python dependencies
COPY apps/rules/requirements.txt /app/requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
# Copy application code
COPY apps/__init__.py /app/apps/
COPY apps/rules/ /app/apps/rules/
COPY packages/ /app/packages/
COPY config/ /app/config/
# Change ownership to non-root user
RUN chown -R app:app /app
# Switch to non-root user
USER app
# Expose no ports (MQTT/Redis client only)
# Health check (check if process is running)
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
CMD pgrep -f "apps.rules.main" || exit 1
# Run the rules engine
CMD ["python", "-m", "apps.rules.main"]

View File

@@ -0,0 +1,371 @@
# Rule Interface Documentation
## Overview
The rule interface provides a clean abstraction for implementing automation rules. Rules respond to device state changes and can publish commands, persist state, and log diagnostics.
## Core Components
### 1. RuleDescriptor
Configuration data for a rule instance (loaded from `rules.yaml`):
```python
RuleDescriptor(
id="window_setback_wohnzimmer", # Unique rule ID
name="Fensterabsenkung Wohnzimmer", # Optional display name
type="window_setback@1.0", # Rule type + version
targets={ # Rule-specific targets
"rooms": ["Wohnzimmer"],
"contacts": ["kontakt_wohnzimmer_..."],
"thermostats": ["thermostat_wohnzimmer"]
},
params={ # Rule-specific parameters
"eco_target": 16.0,
"open_min_secs": 20
}
)
```
### 2. RedisState
Async state persistence with automatic reconnection and retry logic:
```python
# Initialize (done by rule engine)
redis_state = RedisState("redis://172.23.1.116:6379/8")
# Simple key-value with TTL
await ctx.redis.set("rules:my_rule:temp", "22.5", ttl_secs=3600)
value = await ctx.redis.get("rules:my_rule:temp") # Returns "22.5" or None
# Hash storage (for multiple related values)
await ctx.redis.hset("rules:my_rule:sensors", "bedroom", "open")
await ctx.redis.hset("rules:my_rule:sensors", "kitchen", "closed")
value = await ctx.redis.hget("rules:my_rule:sensors", "bedroom") # "open"
# TTL management
await ctx.redis.expire("rules:my_rule:temp", 7200) # Extend to 2 hours
# JSON helpers (for complex data)
import json
data = {"temp": 22.5, "humidity": 45}
await ctx.redis.set("rules:my_rule:data", ctx.redis._dumps(data))
stored = await ctx.redis.get("rules:my_rule:data")
parsed = ctx.redis._loads(stored) if stored else None
```
**Key Conventions:**
- Use prefix `rules:{rule_id}:` for all keys
- Example: `rules:window_setback_wohnzimmer:thermo:device_123:previous`
- TTL recommended for temporary state (previous temperatures, timers)
**Robustness Features:**
- Automatic retry with exponential backoff (default: 3 retries)
- Connection pooling (max 10 connections)
- Automatic reconnection on Redis restart
- Health checks every 30 seconds
- All operations wait and retry, no exceptions on temporary outages
### 3. MQTTClient
Async MQTT client with event normalization and command publishing:
```python
# Initialize (done by rule engine)
mqtt_client = MQTTClient(
broker="172.16.2.16",
port=1883,
client_id="rule_engine"
)
# Subscribe and receive normalized events
async for event in mqtt_client.connect():
# Event structure:
# {
# "topic": "home/contact/sensor_1/state",
# "type": "state",
# "cap": "contact", # Capability (contact, thermostat, etc.)
# "device_id": "sensor_1",
# "payload": {"contact": "open"},
# "ts": "2025-11-11T10:30:45.123456"
# }
if event['cap'] == 'contact':
handle_contact(event)
elif event['cap'] == 'thermostat':
handle_thermostat(event)
# Publish commands (within async context)
await mqtt_client.publish_set_thermostat("thermostat_id", 22.5)
```
**Subscriptions:**
- `home/contact/+/state` - All contact sensor state changes
- `home/thermostat/+/state` - All thermostat state changes
**Publishing:**
- Topic: `home/thermostat/{device_id}/set`
- Payload: `{"type":"thermostat","payload":{"target":22.5}}`
- QoS: 1 (at least once delivery)
**Robustness:**
- Automatic reconnection with exponential backoff
- Connection logging (connect/disconnect events)
- Clean session handling
### 4. MQTTPublisher (Legacy)
Simplified wrapper around MQTTClient for backward compatibility:
```python
# Set thermostat temperature
await ctx.mqtt.publish_set_thermostat("thermostat_wohnzimmer", 21.5)
```
### 5. RuleContext
Runtime context provided to rules:
```python
class RuleContext:
logger # Logger instance
mqtt # MQTTPublisher
redis # RedisState
now() -> datetime # Current timestamp
```
### 5. Rule Abstract Base Class
All rules extend this:
```python
class MyRule(Rule):
async def on_event(self, evt: dict, desc: RuleDescriptor, ctx: RuleContext) -> None:
# Event structure:
# {
# "topic": "home/contact/device_id/state",
# "type": "state",
# "cap": "contact",
# "device_id": "kontakt_wohnzimmer",
# "payload": {"contact": "open"},
# "ts": "2025-11-11T10:30:45.123456"
# }
device_id = evt['device_id']
cap = evt['cap']
if cap == 'contact':
contact_state = evt['payload'].get('contact')
# ... implement logic
```
## Implementing a New Rule
### Step 1: Create Rule Class
```python
from packages.rule_interface import Rule, RuleDescriptor, RuleContext
from typing import Any
class MyCustomRule(Rule):
"""My custom automation rule."""
async def on_event(
self,
evt: dict[str, Any],
desc: RuleDescriptor,
ctx: RuleContext
) -> None:
"""Process device state changes."""
# 1. Extract event data
device_id = evt['device_id']
cap = evt['cap']
payload = evt['payload']
# 2. Filter to relevant devices
if device_id not in desc.targets.get('my_devices', []):
return
# 3. Implement logic
if cap == 'contact':
if payload.get('contact') == 'open':
# Do something
await ctx.mqtt.publish_set_thermostat(
'some_thermostat',
desc.params.get('temp', 20.0)
)
# 4. Persist state if needed
state_key = f"rule:{desc.id}:device:{device_id}:state"
await ctx.redis.set(state_key, payload.get('contact'))
```
### Step 2: Register in RULE_IMPLEMENTATIONS
```python
# In your rule module (e.g., my_custom_rule.py)
RULE_IMPLEMENTATIONS = {
'my_custom@1.0': MyCustomRule,
}
```
### Step 3: Configure in rules.yaml
```yaml
rules:
- id: my_custom_living_room
name: My Custom Rule for Living Room
type: my_custom@1.0
targets:
my_devices:
- device_1
- device_2
params:
temp: 22.0
duration_secs: 300
```
## Best Practices
### Idempotency
Rules MUST be idempotent - processing the same event multiple times should be safe:
```python
# Good: Idempotent
async def on_event(self, evt, desc, ctx):
if evt['payload'].get('contact') == 'open':
await ctx.mqtt.publish_set_thermostat('thermo', 16.0)
# Bad: Not idempotent (increments counter)
async def on_event(self, evt, desc, ctx):
counter = await ctx.redis.get('counter') or '0'
await ctx.redis.set('counter', str(int(counter) + 1))
```
### Error Handling
Handle errors gracefully - the engine will catch and log exceptions:
```python
async def on_event(self, evt, desc, ctx):
try:
await ctx.mqtt.publish_set_thermostat('thermo', 16.0)
except Exception as e:
ctx.logger.error(f"Failed to set thermostat: {e}")
# Don't raise - let event processing continue
```
### State Keys
Use consistent naming for Redis keys:
```python
# Pattern: rule:{rule_id}:{category}:{device_id}:{field}
state_key = f"rule:{desc.id}:contact:{device_id}:state"
ts_key = f"rule:{desc.id}:contact:{device_id}:ts"
prev_key = f"rule:{desc.id}:thermo:{device_id}:previous"
```
### Logging
Use appropriate log levels:
```python
ctx.logger.debug("Detailed diagnostic info")
ctx.logger.info("Normal operation milestones")
ctx.logger.warning("Unexpected but handled situations")
ctx.logger.error("Errors that prevent operation")
```
## Event Structure Reference
### Contact Sensor Event
```python
{
"topic": "home/contact/kontakt_wohnzimmer/state",
"type": "state",
"cap": "contact",
"device_id": "kontakt_wohnzimmer",
"payload": {
"contact": "open" # or "closed"
},
"ts": "2025-11-11T10:30:45.123456"
}
```
### Thermostat Event
```python
{
"topic": "home/thermostat/thermostat_wohnzimmer/state",
"type": "state",
"cap": "thermostat",
"device_id": "thermostat_wohnzimmer",
"payload": {
"target": 21.0,
"current": 20.5,
"mode": "heat"
},
"ts": "2025-11-11T10:30:45.123456"
}
```
## Testing Rules
Rules can be tested independently of the engine:
```python
import pytest
from unittest.mock import AsyncMock, MagicMock
from packages.my_custom_rule import MyCustomRule
from packages.rule_interface import RuleDescriptor, RuleContext
@pytest.mark.asyncio
async def test_my_rule():
# Setup
rule = MyCustomRule()
desc = RuleDescriptor(
id="test_rule",
type="my_custom@1.0",
targets={"my_devices": ["device_1"]},
params={"temp": 22.0}
)
# Mock context
ctx = RuleContext(
logger=MagicMock(),
mqtt_publisher=AsyncMock(),
redis_state=AsyncMock(),
now_fn=lambda: datetime.now()
)
# Test event
evt = {
"device_id": "device_1",
"cap": "contact",
"payload": {"contact": "open"},
"ts": "2025-11-11T10:30:45.123456"
}
# Execute
await rule.on_event(evt, desc, ctx)
# Assert
ctx.mqtt.publish_set_thermostat.assert_called_once_with('some_thermostat', 22.0)
```
## Extension Points
The interface is designed to be extended without modifying the engine:
1. **New rule types**: Just implement `Rule` and register in `RULE_IMPLEMENTATIONS`
2. **New MQTT commands**: Extend `MQTTPublisher` with new methods
3. **New state backends**: Implement `RedisState` interface with different storage
4. **Custom context**: Extend `RuleContext` with additional utilities
The engine only depends on the abstract interfaces, not specific implementations.

View File

@@ -0,0 +1,15 @@
"""
Rule Implementations Package
This package contains all rule implementation modules.
Naming Convention:
- Module name: snake_case matching the rule type name
Example: window_setback.py for type 'window_setback@1.0'
- Class name: PascalCase + 'Rule' suffix
Example: WindowSetbackRule
The rule engine uses load_rule() from rule_interface to dynamically
import modules from this package based on the 'type' field in rules.yaml.
"""

View File

@@ -0,0 +1,170 @@
"""
Example Rule Implementation: Window Setback
Demonstrates how to implement a Rule using the rule_interface.
This rule lowers thermostat temperature when a window is opened.
"""
from typing import Any
from apps.rules.rule_interface import Rule, RuleDescriptor, RuleContext
class WindowSetbackRule(Rule):
"""
Window setback automation rule.
When a window/door contact opens, set thermostats to eco temperature.
When closed for a minimum duration, restore previous target temperature.
Configuration:
targets:
contacts: List of contact sensor device IDs
thermostats: List of thermostat device IDs
params:
eco_target: Temperature to set when window opens (default: 16.0)
open_min_secs: Minimum seconds window must be open before triggering (default: 20)
close_min_secs: Minimum seconds window must be closed before restoring (default: 20)
previous_target_ttl_secs: How long to remember previous temperature (default: 86400)
State storage:
Redis keys:
rule:{rule_id}:contact:{device_id}:state -> "open" | "closed"
rule:{rule_id}:contact:{device_id}:ts -> ISO timestamp of last change
rule:{rule_id}:thermo:{device_id}:previous -> Previous target temperature
"""
async def on_event(
self,
evt: dict[str, Any],
desc: RuleDescriptor,
ctx: RuleContext
) -> None:
"""
Process contact sensor or thermostat state changes.
Logic:
1. If contact opened → remember current thermostat targets, set to eco
2. If contact closed for min_secs → restore previous targets
3. If thermostat target changed → update stored previous value
"""
device_id = evt['device_id']
cap = evt['cap']
payload = evt['payload']
# Only process events for devices in our targets
target_contacts = desc.targets.contacts or []
target_thermostats = desc.targets.thermostats or []
if cap == 'contact' and device_id in target_contacts:
await self._handle_contact_event(evt, desc, ctx)
elif cap == 'thermostat' and device_id in target_thermostats:
await self._handle_thermostat_event(evt, desc, ctx)
async def _handle_contact_event(
self,
evt: dict[str, Any],
desc: RuleDescriptor,
ctx: RuleContext
) -> None:
"""Handle contact sensor state change."""
device_id = evt['device_id']
contact_state = evt['payload'].get('contact') # "open" or "closed"
event_ts = evt.get('ts', ctx.now().isoformat())
if not contact_state:
ctx.logger.warning(f"Contact event missing 'contact' field: {evt}")
return
# Store current state and timestamp
state_key = f"rule:{desc.id}:contact:{device_id}:state"
ts_key = f"rule:{desc.id}:contact:{device_id}:ts"
await ctx.redis.set(state_key, contact_state)
await ctx.redis.set(ts_key, event_ts)
if contact_state == 'open':
await self._on_window_opened(desc, ctx)
elif contact_state == 'closed':
await self._on_window_closed(desc, ctx)
async def _on_window_opened(self, desc: RuleDescriptor, ctx: RuleContext) -> None:
"""Window opened - set thermostats to eco temperature."""
eco_target = desc.params.get('eco_target', 16.0)
target_thermostats = desc.targets.thermostats or []
ctx.logger.info(
f"Rule {desc.id}: Window opened, setting {len(target_thermostats)} "
f"thermostats to eco temperature {eco_target}°C"
)
# Set all thermostats to eco temperature
for thermo_id in target_thermostats:
try:
await ctx.mqtt.publish_set_thermostat(thermo_id, eco_target)
ctx.logger.debug(f"Set {thermo_id} to {eco_target}°C")
except Exception as e:
ctx.logger.error(f"Failed to set {thermo_id}: {e}")
async def _on_window_closed(self, desc: RuleDescriptor, ctx: RuleContext) -> None:
"""
Window closed - restore previous temperatures if closed long enough.
Note: This is simplified. A production implementation would check
close_min_secs and use a timer/scheduler.
"""
target_thermostats = desc.targets.thermostats or []
ttl_secs = desc.params.get('previous_target_ttl_secs', 86400)
ctx.logger.info(
f"Rule {desc.id}: Window closed, restoring {len(target_thermostats)} "
f"thermostats to previous temperatures"
)
# Restore previous temperatures
for thermo_id in target_thermostats:
prev_key = f"rule:{desc.id}:thermo:{thermo_id}:previous"
prev_temp_str = await ctx.redis.get(prev_key)
if prev_temp_str:
try:
prev_temp = float(prev_temp_str)
await ctx.mqtt.publish_set_thermostat(thermo_id, prev_temp)
ctx.logger.debug(f"Restored {thermo_id} to {prev_temp}°C")
except Exception as e:
ctx.logger.error(f"Failed to restore {thermo_id}: {e}")
async def _handle_thermostat_event(
self,
evt: dict[str, Any],
desc: RuleDescriptor,
ctx: RuleContext
) -> None:
"""
Handle thermostat state change - remember current target.
This allows us to restore the temperature when window closes.
"""
device_id = evt['device_id']
payload = evt['payload']
current_target = payload.get('target')
if current_target is None:
return # No target in this state update
# Store as previous target with TTL
prev_key = f"rule:{desc.id}:thermo:{device_id}:previous"
ttl_secs = desc.params.get('previous_target_ttl_secs', 86400)
await ctx.redis.set(prev_key, str(current_target), ttl_secs=ttl_secs)
ctx.logger.debug(
f"Rule {desc.id}: Stored previous target for {device_id}: {current_target}°C"
)
# Rule registry - maps rule type to implementation class
RULE_IMPLEMENTATIONS = {
'window_setback@1.0': WindowSetbackRule,
}

View File

@@ -1,12 +1,26 @@
"""Rules main entry point."""
"""
Rules Engine
Loads rules configuration, subscribes to MQTT events, and dispatches events
to registered rule implementations.
"""
import asyncio
import logging
import os
import signal
import sys
import time
from typing import NoReturn
from datetime import datetime
from typing import Any
from apscheduler.schedulers.background import BackgroundScheduler
from apps.rules.rules_config import load_rules_config
from apps.rules.rule_interface import (
RuleDescriptor,
RuleContext,
MQTTClient,
RedisState,
load_rule
)
# Configure logging
logging.basicConfig(
@@ -15,69 +29,287 @@ logging.basicConfig(
)
logger = logging.getLogger(__name__)
# Global scheduler instance
scheduler: BackgroundScheduler | None = None
def rule_tick() -> None:
"""Example job that runs every minute.
This is a placeholder for actual rule evaluation logic.
class RuleEngine:
"""
logger.info("Rule tick")
def shutdown_handler(signum: int, frame: object) -> NoReturn:
"""Handle shutdown signals gracefully.
Args:
signum: Signal number
frame: Current stack frame
Rule engine that loads rules, subscribes to MQTT events,
and dispatches them to registered rule implementations.
"""
logger.info(f"Received signal {signum}, shutting down...")
if scheduler:
scheduler.shutdown(wait=True)
logger.info("Scheduler stopped")
sys.exit(0)
def __init__(
self,
rules_config_path: str,
mqtt_broker: str,
mqtt_port: int,
redis_url: str
):
"""
Initialize rule engine.
Args:
rules_config_path: Path to rules.yaml
mqtt_broker: MQTT broker hostname/IP
mqtt_port: MQTT broker port
redis_url: Redis connection URL
"""
self.rules_config_path = rules_config_path
self.mqtt_broker = mqtt_broker
self.mqtt_port = mqtt_port
self.redis_url = redis_url
# Will be initialized in setup()
self.rule_descriptors: list[RuleDescriptor] = []
self.rules: dict[str, Any] = {} # rule_id -> Rule instance
self.mqtt_client: MQTTClient | None = None
self.redis_state: RedisState | None = None
self.context: RuleContext | None = None
# For graceful shutdown
self._shutdown_event = asyncio.Event()
def setup(self) -> None:
"""
Load configuration and instantiate rules.
Raises:
ImportError: If rule implementation not found
ValueError: If configuration is invalid
"""
logger.info(f"Loading rules configuration from {self.rules_config_path}")
# Load rules configuration
config = load_rules_config(self.rules_config_path)
self.rule_descriptors = config.rules
logger.info(f"Loaded {len(self.rule_descriptors)} rule(s) from configuration")
# Instantiate each rule
for desc in self.rule_descriptors:
try:
rule_instance = load_rule(desc)
self.rules[desc.id] = rule_instance
logger.info(f" - {desc.id} (type: {desc.type})")
except Exception as e:
logger.error(f"Failed to load rule {desc.id} (type: {desc.type}): {e}")
raise
logger.info(f"Successfully loaded {len(self.rules)} rule implementation(s)")
# Initialize MQTT client
self.mqtt_client = MQTTClient(
broker=self.mqtt_broker,
port=self.mqtt_port,
client_id="rule_engine"
)
self.mqtt_client.set_logger(logger)
# Initialize Redis state
self.redis_state = RedisState(self.redis_url)
# Create MQTT publisher wrapper for RuleContext
from apps.rules.rule_interface import MQTTPublisher
mqtt_publisher = MQTTPublisher(mqtt_client=self.mqtt_client)
# Create rule context
self.context = RuleContext(
logger=logger,
mqtt_publisher=mqtt_publisher,
redis_state=self.redis_state,
now_fn=datetime.now
)
def _filter_rules_for_event(self, event: dict[str, Any]) -> list[tuple[str, RuleDescriptor]]:
"""
Filter rules that should receive this event.
Rules match if:
- For contact events: device_id in targets.contacts
- For thermostat events: device_id in targets.thermostats
- (Room-based filtering could be added here)
Args:
event: Normalized MQTT event
Returns:
List of (rule_id, descriptor) tuples that should process this event
"""
matching_rules = []
device_id = event.get('device_id')
cap = event.get('cap')
if not device_id or not cap:
return matching_rules
logger.debug(f"Filtering for cap={cap}, device_id={device_id}")
for rule_id, desc in [(r.id, r) for r in self.rule_descriptors]:
targets = desc.targets
# Check if this device is in the rule's targets
matched = False
if cap == 'contact' and targets.contacts:
logger.debug(f"Rule {rule_id}: checking contacts {targets.contacts}")
if device_id in targets.contacts:
matched = True
elif cap == 'thermostat' and targets.thermostats:
logger.debug(f"Rule {rule_id}: checking thermostats {targets.thermostats}")
if device_id in targets.thermostats:
matched = True
# Could add room-based filtering here:
# elif 'rooms' in targets:
# device_room = get_device_room(device_id)
# if device_room in targets['rooms']:
# matched = True
if matched:
matching_rules.append((rule_id, desc))
return matching_rules
async def _dispatch_event(self, event: dict[str, Any]) -> None:
"""
Dispatch event to matching rules.
Calls rule.on_event() for each matching rule sequentially
to preserve order and avoid race conditions.
Args:
event: Normalized MQTT event
"""
# Debug logging
logger.debug(f"Received event: {event}")
matching_rules = self._filter_rules_for_event(event)
if not matching_rules:
# No rules interested in this event
logger.debug(f"No matching rules for {event.get('cap')}/{event.get('device_id')}")
return
logger.info(
f"Event {event['cap']}/{event['device_id']}: "
f"{len(matching_rules)} matching rule(s)"
)
# Process rules sequentially to preserve order
for rule_id, desc in matching_rules:
rule = self.rules.get(rule_id)
if not rule:
logger.warning(f"Rule instance not found for {rule_id}")
continue
try:
await rule.on_event(event, desc, self.context)
except Exception as e:
logger.error(
f"Error in rule {rule_id} processing event "
f"{event['cap']}/{event['device_id']}: {e}",
exc_info=True
)
# Continue with other rules
async def run(self) -> None:
"""
Main event loop - subscribe to MQTT and process events.
Runs until shutdown signal received.
"""
logger.info("Starting event processing loop")
try:
async for event in self.mqtt_client.connect():
# Check for shutdown
if self._shutdown_event.is_set():
logger.info("Shutdown signal received, stopping event loop")
break
# Dispatch event to matching rules
await self._dispatch_event(event)
except asyncio.CancelledError:
logger.info("Event loop cancelled")
raise
except Exception as e:
logger.error(f"Fatal error in event loop: {e}", exc_info=True)
raise
async def shutdown(self) -> None:
"""Graceful shutdown - close connections."""
logger.info("Shutting down rule engine...")
self._shutdown_event.set()
if self.redis_state:
await self.redis_state.close()
logger.info("Redis connection closed")
logger.info("Shutdown complete")
async def main_async() -> None:
"""Async main function."""
# Read configuration from environment
rules_config = os.getenv('RULES_CONFIG', 'config/rules.yaml')
mqtt_broker = os.getenv('MQTT_BROKER', '172.16.2.16')
mqtt_port = int(os.getenv('MQTT_PORT', '1883'))
redis_host = os.getenv('REDIS_HOST', '172.23.1.116')
redis_port = int(os.getenv('REDIS_PORT', '6379'))
redis_db = int(os.getenv('REDIS_DB', '8'))
redis_url = f'redis://{redis_host}:{redis_port}/{redis_db}'
logger.info("=" * 60)
logger.info("Rules Engine Starting")
logger.info("=" * 60)
logger.info(f"Config: {rules_config}")
logger.info(f"MQTT: {mqtt_broker}:{mqtt_port}")
logger.info(f"Redis: {redis_url}")
logger.info("=" * 60)
# Initialize engine
engine = RuleEngine(
rules_config_path=rules_config,
mqtt_broker=mqtt_broker,
mqtt_port=mqtt_port,
redis_url=redis_url
)
# Load rules
try:
engine.setup()
except Exception as e:
logger.error(f"Failed to setup engine: {e}", exc_info=True)
sys.exit(1)
# Setup signal handlers for graceful shutdown
loop = asyncio.get_running_loop()
def signal_handler():
logger.info("Received shutdown signal")
asyncio.create_task(engine.shutdown())
for sig in (signal.SIGTERM, signal.SIGINT):
loop.add_signal_handler(sig, signal_handler)
# Run engine
try:
await engine.run()
except asyncio.CancelledError:
logger.info("Main task cancelled")
finally:
await engine.shutdown()
def main() -> None:
"""Run the rules application."""
global scheduler
logger.info("Rules engine starting...")
# Register signal handlers
signal.signal(signal.SIGINT, shutdown_handler)
signal.signal(signal.SIGTERM, shutdown_handler)
# Initialize scheduler
scheduler = BackgroundScheduler()
# Add example job - runs every minute
scheduler.add_job(
rule_tick,
'interval',
minutes=1,
id='rule_tick',
name='Rule Tick Job'
)
# Start scheduler
scheduler.start()
logger.info("Scheduler started with rule_tick job (every 1 minute)")
# Run initial tick immediately
rule_tick()
# Keep the application running
"""Entry point for rule engine."""
try:
while True:
time.sleep(1)
asyncio.run(main_async())
except KeyboardInterrupt:
logger.info("KeyboardInterrupt received, shutting down...")
scheduler.shutdown(wait=True)
logger.info("Scheduler stopped")
logger.info("Keyboard interrupt received")
except Exception as e:
logger.error(f"Fatal error: {e}", exc_info=True)
sys.exit(1)
if __name__ == "__main__":

View File

@@ -0,0 +1,5 @@
# Rules Engine Dependencies
pydantic>=2.0
redis>=5.0.1
aiomqtt>=2.0.1
pyyaml>=6.0.1

View File

@@ -0,0 +1,704 @@
"""
Rule Interface and Context Objects
Provides the core abstractions for implementing automation rules:
- RuleDescriptor: Configuration data for a rule instance
- RedisState: State persistence interface
- RuleContext: Runtime context provided to rules
- Rule: Abstract base class for all rule implementations
"""
from abc import ABC, abstractmethod
from datetime import datetime
from typing import Any, Awaitable, Optional
from pydantic import BaseModel, Field
class RuleDescriptor(BaseModel):
"""
Configuration descriptor for a rule instance.
This is the validated representation of a rule from rules.yaml.
The engine loads these and passes them to rule implementations.
"""
id: str = Field(..., description="Unique identifier for this rule instance")
name: Optional[str] = Field(None, description="Optional human-readable name")
type: str = Field(..., description="Rule type with version (e.g., 'window_setback@1.0')")
targets: dict[str, Any] = Field(
default_factory=dict,
description="Rule-specific target specification (rooms, devices, etc.)"
)
params: dict[str, Any] = Field(
default_factory=dict,
description="Rule-specific parameters"
)
class RedisState:
"""
Async Redis-backed state persistence for rules with automatic reconnection.
Provides a simple key-value and hash storage interface for rules to persist
state across restarts. All operations are asynchronous and include retry logic
for robustness against temporary Redis outages.
Key Convention:
- Callers should use keys like: f"rules:{rule_id}:contact:{device_id}"
- This class does NOT enforce key prefixes - caller controls the full key
"""
def __init__(self, url: str, max_retries: int = 3, retry_delay: float = 0.5):
"""
Initialize RedisState with connection URL.
Args:
url: Redis connection URL (e.g., 'redis://172.23.1.116:6379/8')
max_retries: Maximum number of retry attempts for operations (default: 3)
retry_delay: Initial delay between retries in seconds, uses exponential backoff (default: 0.5)
Note:
Connection is lazy - actual connection happens on first operation.
Uses connection pooling with automatic reconnection on failure.
"""
self._url = url
self._max_retries = max_retries
self._retry_delay = retry_delay
self._redis: Optional[Any] = None # redis.asyncio.Redis instance
async def _get_client(self):
"""
Get or create Redis client with connection pool.
Lazy initialization ensures we don't connect until first use.
Uses decode_responses=True for automatic UTF-8 decoding.
"""
if self._redis is None:
import redis.asyncio as aioredis
self._redis = await aioredis.from_url(
self._url,
decode_responses=True, # Automatic UTF-8 decode
encoding='utf-8',
max_connections=10, # Connection pool size
socket_connect_timeout=5,
socket_keepalive=True,
health_check_interval=30 # Auto-check connection health
)
return self._redis
async def _execute_with_retry(self, operation, *args, **kwargs):
"""
Execute Redis operation with exponential backoff retry.
Handles temporary connection failures gracefully by retrying
with exponential backoff. On permanent failure, raises the
original exception.
Args:
operation: Async callable (Redis method)
*args, **kwargs: Arguments to pass to operation
Returns:
Result of the operation
Raises:
Exception: If all retries are exhausted
"""
import asyncio
last_exception = None
for attempt in range(self._max_retries):
try:
client = await self._get_client()
return await operation(client, *args, **kwargs)
except Exception as e:
last_exception = e
if attempt < self._max_retries - 1:
# Exponential backoff: 0.5s, 1s, 2s, ...
delay = self._retry_delay * (2 ** attempt)
await asyncio.sleep(delay)
# Reset client to force reconnection
if self._redis:
try:
await self._redis.close()
except:
pass
self._redis = None
# All retries exhausted
raise last_exception
# JSON helpers for complex data structures
def _dumps(self, obj: Any) -> str:
"""Serialize Python object to JSON string."""
import json
return json.dumps(obj, ensure_ascii=False)
def _loads(self, s: str) -> Any:
"""Deserialize JSON string to Python object."""
import json
return json.loads(s)
async def get(self, key: str) -> Optional[str]:
"""
Get a string value by key.
Args:
key: Redis key (e.g., "rules:my_rule:contact:sensor_1")
Returns:
String value or None if key doesn't exist
Example:
>>> state = RedisState("redis://localhost:6379/0")
>>> await state.set("rules:r1:temp", "22.5")
>>> temp = await state.get("rules:r1:temp")
>>> print(temp) # "22.5"
"""
async def _get(client, k):
return await client.get(k)
return await self._execute_with_retry(_get, key)
async def set(self, key: str, value: str, ttl_secs: Optional[int] = None) -> None:
"""
Set a string value with optional TTL.
Args:
key: Redis key
value: String value to store
ttl_secs: Optional time-to-live in seconds. If None, key persists indefinitely.
Example:
>>> state = RedisState("redis://localhost:6379/0")
>>> # Store with 1 hour TTL
>>> await state.set("rules:r1:previous_temp", "20.0", ttl_secs=3600)
"""
async def _set(client, k, v, ttl):
if ttl is not None:
await client.setex(k, ttl, v)
else:
await client.set(k, v)
await self._execute_with_retry(_set, key, value, ttl_secs)
async def hget(self, key: str, field: str) -> Optional[str]:
"""
Get a hash field value.
Args:
key: Redis hash key
field: Field name within the hash
Returns:
String value or None if field doesn't exist
Example:
>>> state = RedisState("redis://localhost:6379/0")
>>> await state.hset("rules:r1:device_states", "sensor_1", "open")
>>> value = await state.hget("rules:r1:device_states", "sensor_1")
>>> print(value) # "open"
"""
async def _hget(client, k, f):
return await client.hget(k, f)
return await self._execute_with_retry(_hget, key, field)
async def hset(self, key: str, field: str, value: str) -> None:
"""
Set a hash field value.
Args:
key: Redis hash key
field: Field name within the hash
value: String value to store
Example:
>>> state = RedisState("redis://localhost:6379/0")
>>> await state.hset("rules:r1:sensors", "bedroom", "open")
>>> await state.hset("rules:r1:sensors", "kitchen", "closed")
"""
async def _hset(client, k, f, v):
await client.hset(k, f, v)
await self._execute_with_retry(_hset, key, field, value)
async def expire(self, key: str, ttl_secs: int) -> None:
"""
Set or update TTL on an existing key.
Args:
key: Redis key
ttl_secs: Time-to-live in seconds
Example:
>>> state = RedisState("redis://localhost:6379/0")
>>> await state.set("rules:r1:temp", "22.5")
>>> await state.expire("rules:r1:temp", 3600) # Expire in 1 hour
"""
async def _expire(client, k, ttl):
await client.expire(k, ttl)
await self._execute_with_retry(_expire, key, ttl_secs)
async def close(self) -> None:
"""
Close Redis connection and cleanup resources.
Should be called when shutting down the application.
"""
if self._redis:
await self._redis.close()
self._redis = None
class MQTTClient:
"""
Async MQTT client for rule engine with event normalization and publishing.
Subscribes to device state topics, normalizes events to a consistent format,
and provides high-level publishing methods for device commands.
Event Normalization:
All incoming MQTT messages are parsed into a normalized event structure:
{
"topic": "home/contact/sensor_1/state",
"type": "state",
"cap": "contact", # Capability type (contact, thermostat, light, etc.)
"device_id": "sensor_1",
"payload": {"contact": "open"},
"ts": "2025-11-11T10:30:45.123456"
}
"""
def __init__(
self,
broker: str,
port: int = 1883,
client_id: str = "rule_engine",
reconnect_interval: int = 5,
max_reconnect_delay: int = 300
):
"""
Initialize MQTT client.
Args:
broker: MQTT broker hostname or IP
port: MQTT broker port (default: 1883)
client_id: Unique client ID for this connection
reconnect_interval: Initial reconnect delay in seconds (default: 5)
max_reconnect_delay: Maximum reconnect delay in seconds (default: 300)
"""
self._broker = broker
self._port = port
self._client_id = client_id
self._reconnect_interval = reconnect_interval
self._max_reconnect_delay = max_reconnect_delay
self._client = None
self._logger = None # Set externally
def set_logger(self, logger):
"""Set logger instance for connection status messages."""
self._logger = logger
def _log(self, level: str, msg: str):
"""Internal logging helper."""
if self._logger:
getattr(self._logger, level)(msg)
else:
print(f"[{level.upper()}] {msg}")
async def connect(self):
"""
Connect to MQTT broker with automatic reconnection.
This method manages the connection and automatically reconnects
with exponential backoff if the connection is lost.
"""
import aiomqtt
from aiomqtt import Client
reconnect_delay = self._reconnect_interval
while True:
try:
self._log("info", f"Connecting to MQTT broker {self._broker}:{self._port} (client_id={self._client_id})")
async with Client(
hostname=self._broker,
port=self._port,
identifier=self._client_id,
) as client:
self._client = client
self._log("info", f"Connected to MQTT broker {self._broker}:{self._port}")
# Subscribe to device state topics
await client.subscribe("home/contact/+/state")
await client.subscribe("home/thermostat/+/state")
self._log("info", "Subscribed to home/contact/+/state, home/thermostat/+/state")
# Reset reconnect delay on successful connection
reconnect_delay = self._reconnect_interval
# Process messages - this is a generator that yields messages
async for message in client.messages:
yield self._normalize_event(message)
except aiomqtt.MqttError as e:
self._log("error", f"MQTT connection error: {e}")
self._log("info", f"Reconnecting in {reconnect_delay} seconds...")
import asyncio
await asyncio.sleep(reconnect_delay)
# Exponential backoff
reconnect_delay = min(reconnect_delay * 2, self._max_reconnect_delay)
def _normalize_event(self, message) -> dict[str, Any]:
"""
Normalize MQTT message to standard event format.
Parses topic to extract capability type and device_id,
adds timestamp, and structures payload.
Args:
message: aiomqtt.Message instance
Returns:
Normalized event dictionary
Example:
Topic: home/contact/sensor_bedroom/state
Payload: {"contact": "open"}
Returns:
{
"topic": "home/contact/sensor_bedroom/state",
"type": "state",
"cap": "contact",
"device_id": "sensor_bedroom",
"payload": {"contact": "open"},
"ts": "2025-11-11T10:30:45.123456"
}
"""
from datetime import datetime
import json
topic = str(message.topic)
topic_parts = topic.split('/')
# Parse topic: home/{capability}/{device_id}/state
if len(topic_parts) >= 4 and topic_parts[0] == 'home' and topic_parts[3] == 'state':
cap = topic_parts[1] # contact, thermostat, light, etc.
device_id = topic_parts[2]
else:
# Fallback for unexpected topic format
cap = "unknown"
device_id = topic_parts[-2] if len(topic_parts) >= 2 else "unknown"
# Parse payload
try:
payload = json.loads(message.payload.decode('utf-8'))
except (json.JSONDecodeError, UnicodeDecodeError):
payload = {"raw": message.payload.decode('utf-8', errors='replace')}
# Generate timestamp
ts = datetime.now().isoformat()
return {
"topic": topic,
"type": "state",
"cap": cap,
"device_id": device_id,
"payload": payload,
"ts": ts
}
async def publish_set_thermostat(self, device_id: str, target: float) -> None:
"""
Publish thermostat target temperature command.
Publishes to: home/thermostat/{device_id}/set
QoS: 1 (at least once delivery)
Args:
device_id: Thermostat device identifier
target: Target temperature in degrees Celsius
Example:
>>> mqtt = MQTTClient("172.16.2.16", 1883)
>>> await mqtt.publish_set_thermostat("thermostat_wohnzimmer", 22.5)
Published to: home/thermostat/thermostat_wohnzimmer/set
Payload: {"type":"thermostat","payload":{"target":22.5}}
"""
import json
if self._client is None:
raise RuntimeError("MQTT client not connected. Call connect() first.")
topic = f"home/thermostat/{device_id}/set"
payload = {
"type": "thermostat",
"payload": {
"target": target
}
}
payload_str = json.dumps(payload)
await self._client.publish(
topic,
payload=payload_str.encode('utf-8'),
qos=1 # At least once delivery
)
self._log("debug", f"Published SET to {topic}: {payload_str}")
# Legacy alias for backward compatibility
class MQTTPublisher:
"""
Legacy MQTT publishing interface - DEPRECATED.
Use MQTTClient instead for new code.
This class is kept for backward compatibility with existing documentation.
"""
def __init__(self, mqtt_client):
"""
Initialize MQTT publisher.
Args:
mqtt_client: MQTTClient instance
"""
self._mqtt = mqtt_client
async def publish_set_thermostat(self, device_id: str, target: float) -> None:
"""
Publish a thermostat target temperature command.
Args:
device_id: Thermostat device identifier
target: Target temperature in degrees Celsius
"""
await self._mqtt.publish_set_thermostat(device_id, target)
class RuleContext:
"""
Runtime context provided to rules during event processing.
Contains all external dependencies and utilities a rule needs:
- Logger for diagnostics
- MQTT client for publishing commands
- Redis client for state persistence
- Current timestamp function
"""
def __init__(
self,
logger,
mqtt_publisher: MQTTPublisher,
redis_state: RedisState,
now_fn=None
):
"""
Initialize rule context.
Args:
logger: Logger instance (e.g., logging.Logger)
mqtt_publisher: MQTTPublisher instance for device commands
redis_state: RedisState instance for persistence
now_fn: Optional callable returning current datetime (defaults to datetime.now)
"""
self.logger = logger
self.mqtt = mqtt_publisher
self.redis = redis_state
self._now_fn = now_fn or datetime.now
def now(self) -> datetime:
"""
Get current timestamp.
Returns:
Current datetime (timezone-aware if now_fn provides it)
"""
return self._now_fn()
class Rule(ABC):
"""
Abstract base class for all automation rule implementations.
Rules implement event-driven automation logic. The engine calls on_event()
for each relevant device state change, passing the event data, rule configuration,
and runtime context.
Implementations must be idempotent - processing the same event multiple times
should produce the same result.
Example implementation:
class WindowSetbackRule(Rule):
async def on_event(self, evt: dict, desc: RuleDescriptor, ctx: RuleContext) -> None:
device_id = evt['device_id']
cap = evt['cap']
if cap == 'contact':
contact_state = evt['payload'].get('contact')
if contact_state == 'open':
# Window opened - set thermostats to eco
for thermo_id in desc.targets.get('thermostats', []):
eco_temp = desc.params.get('eco_target', 16.0)
await ctx.mqtt.publish_set_thermostat(thermo_id, eco_temp)
"""
@abstractmethod
async def on_event(
self,
evt: dict[str, Any],
desc: RuleDescriptor,
ctx: RuleContext
) -> None:
"""
Process a device state change event.
This method is called by the rule engine whenever a device state changes
that is relevant to this rule. The implementation should examine the event
and take appropriate actions (e.g., publish MQTT commands, update state).
MUST be idempotent: Processing the same event multiple times should be safe.
Args:
evt: Event dictionary with the following structure:
{
"topic": "home/contact/device_id/state", # MQTT topic
"type": "state", # Message type
"cap": "contact", # Capability type
"device_id": "kontakt_wohnzimmer", # Device identifier
"payload": {"contact": "open"}, # Capability-specific payload
"ts": "2025-11-11T10:30:45.123456" # ISO timestamp
}
desc: Rule configuration from rules.yaml
ctx: Runtime context with logger, MQTT, Redis, and timestamp utilities
Returns:
None
Raises:
Exception: Implementation may raise exceptions for errors.
The engine will log them but continue processing.
"""
pass
# ============================================================================
# Dynamic Rule Loading
# ============================================================================
import importlib
import re
from typing import Type
# Cache for loaded rule classes (per process)
_RULE_CLASS_CACHE: dict[str, Type[Rule]] = {}
def load_rule(desc: RuleDescriptor) -> Rule:
"""
Dynamically load and instantiate a rule based on its type descriptor.
Convention:
- Rule type format: 'name@version' (e.g., 'window_setback@1.0')
- Module path: apps.rules.impl.{name}
- Class name: PascalCase version of name + 'Rule'
Example: 'window_setback''WindowSetbackRule'
Args:
desc: Rule descriptor from rules.yaml
Returns:
Instantiated Rule object
Raises:
ValueError: If type format is invalid
ImportError: If rule module cannot be found
AttributeError: If rule class cannot be found in module
Examples:
>>> desc = RuleDescriptor(
... id="test_rule",
... type="window_setback@1.0",
... targets={},
... params={}
... )
>>> rule = load_rule(desc)
>>> isinstance(rule, Rule)
True
"""
rule_type = desc.type
# Check cache first
if rule_type in _RULE_CLASS_CACHE:
rule_class = _RULE_CLASS_CACHE[rule_type]
return rule_class()
# Parse type: 'name@version'
if '@' not in rule_type:
raise ValueError(
f"Invalid rule type '{rule_type}': must be in format 'name@version' "
f"(e.g., 'window_setback@1.0')"
)
name, version = rule_type.split('@', 1)
# Validate name (alphanumeric and underscores only)
if not re.match(r'^[a-z][a-z0-9_]*$', name):
raise ValueError(
f"Invalid rule name '{name}': must start with lowercase letter "
f"and contain only lowercase letters, numbers, and underscores"
)
# Convert snake_case to PascalCase for class name
# Example: 'window_setback' → 'WindowSetbackRule'
class_name = ''.join(word.capitalize() for word in name.split('_')) + 'Rule'
# Construct module path
module_path = f'apps.rules.impl.{name}'
# Try to import the module
try:
module = importlib.import_module(module_path)
except ImportError as e:
raise ImportError(
f"Cannot load rule type '{rule_type}': module '{module_path}' not found.\n"
f"Hint: Create file 'apps/rules/impl/{name}.py' with class '{class_name}'.\n"
f"Original error: {e}"
) from e
# Try to get the class from the module
try:
rule_class = getattr(module, class_name)
except AttributeError as e:
raise AttributeError(
f"Cannot load rule type '{rule_type}': class '{class_name}' not found in module '{module_path}'.\n"
f"Hint: Define 'class {class_name}(Rule):' in 'apps/rules/impl/{name}.py'.\n"
f"Available classes in module: {[name for name in dir(module) if not name.startswith('_')]}"
) from e
# Validate that it's a Rule subclass
if not issubclass(rule_class, Rule):
raise TypeError(
f"Class '{class_name}' in '{module_path}' is not a subclass of Rule. "
f"Ensure it inherits from apps.rules.rule_interface.Rule"
)
# Cache the class
_RULE_CLASS_CACHE[rule_type] = rule_class
# Instantiate and return
return rule_class()

128
apps/rules/rules_config.py Normal file
View File

@@ -0,0 +1,128 @@
"""
Rules Configuration Schema and Loader
Provides Pydantic models for validating rules.yaml configuration.
"""
from pathlib import Path
from typing import Any, Optional
import yaml
from pydantic import BaseModel, Field, field_validator
class RuleTargets(BaseModel):
"""Targets for a rule (rooms, devices, etc.)"""
rooms: list[str] = Field(default_factory=list)
contacts: list[str] = Field(default_factory=list)
thermostats: list[str] = Field(default_factory=list)
lights: list[str] = Field(default_factory=list)
relays: list[str] = Field(default_factory=list)
class Rule(BaseModel):
"""Single rule configuration"""
id: str = Field(..., description="Unique rule identifier")
name: Optional[str] = Field(None, description="Optional human-readable name")
type: str = Field(..., description="Rule type (e.g., 'window_setback@1.0')")
targets: RuleTargets = Field(..., description="Target rooms and devices")
params: dict[str, Any] = Field(default_factory=dict, description="Rule-specific parameters")
@field_validator('id')
@classmethod
def validate_id(cls, v: str) -> str:
if not v or not v.strip():
raise ValueError("Rule ID cannot be empty")
return v.strip()
@field_validator('type')
@classmethod
def validate_type(cls, v: str) -> str:
if not v or not v.strip():
raise ValueError("Rule type cannot be empty")
if '@' not in v:
raise ValueError(f"Rule type must include version (e.g., 'window_setback@1.0'), got: {v}")
return v.strip()
class RulesConfig(BaseModel):
"""Root configuration object"""
rules: list[Rule] = Field(..., description="List of all rules")
@field_validator('rules')
@classmethod
def validate_unique_ids(cls, rules: list[Rule]) -> list[Rule]:
"""Ensure all rule IDs are unique"""
ids = [rule.id for rule in rules]
duplicates = [id for id in ids if ids.count(id) > 1]
if duplicates:
raise ValueError(f"Duplicate rule IDs found: {set(duplicates)}")
return rules
def load_rules_config(config_path: str | Path = "config/rules.yaml") -> RulesConfig:
"""
Load and validate rules configuration from YAML file.
Args:
config_path: Path to rules.yaml file
Returns:
Validated RulesConfig object
Raises:
FileNotFoundError: If config file doesn't exist
ValueError: If YAML is invalid or validation fails
"""
config_path = Path(config_path)
if not config_path.exists():
raise FileNotFoundError(f"Rules configuration not found: {config_path}")
with open(config_path, 'r', encoding='utf-8') as f:
try:
data = yaml.safe_load(f)
except yaml.YAMLError as e:
raise ValueError(f"Invalid YAML in {config_path}: {e}") from e
if not data:
raise ValueError(f"Empty configuration file: {config_path}")
if 'rules' not in data:
raise ValueError(
f"Missing 'rules:' key in {config_path}. "
"Configuration must start with 'rules:' followed by a list of rule definitions."
)
try:
return RulesConfig(**data)
except Exception as e:
raise ValueError(f"Configuration validation failed: {e}") from e
def get_rule_by_id(config: RulesConfig, rule_id: str) -> Rule | None:
"""Get a specific rule by ID"""
for rule in config.rules:
if rule.id == rule_id:
return rule
return None
def get_rules_by_type(config: RulesConfig, rule_type: str) -> list[Rule]:
"""Get all rules of a specific type"""
return [rule for rule in config.rules if rule.type == rule_type]
if __name__ == "__main__":
# Test configuration loading
try:
config = load_rules_config()
print(f"✅ Loaded {len(config.rules)} rules:")
for rule in config.rules:
name = f" ({rule.name})" if rule.name else ""
print(f" - {rule.id}{name}: {rule.type}")
print(f" Targets: {len(rule.targets.rooms)} rooms, "
f"{len(rule.targets.contacts)} contacts, "
f"{len(rule.targets.thermostats)} thermostats")
except Exception as e:
print(f"❌ Configuration error: {e}")

View File

@@ -59,13 +59,9 @@ docker run --rm -p 8010:8010 \
simulator:dev
```
**Mit Docker Network (optional):**
```bash
docker run --rm -p 8010:8010 \
--name simulator \
-e MQTT_BROKER=172.23.1.102 \
simulator:dev
```
**Note for finch/nerdctl users:**
- finch binds ports to `127.0.0.1` by default
- The web interface will be accessible at `http://127.0.0.1:8010`
#### Environment Variables

View File

@@ -37,17 +37,6 @@ docker build -t ui:dev -f apps/ui/Dockerfile .
#### Run Container
**Linux Server (empfohlen):**
```bash
# Mit Docker Network für Container-to-Container Kommunikation
docker run --rm -p 8002:8002 \
-e UI_PORT=8002 \
-e API_BASE=http://172.19.1.11:8001 \
-e BASE_PATH=/ \
ui:dev
```
**macOS mit finch/nerdctl:**
```bash
docker run --rm -p 8002:8002 \
--add-host=host.docker.internal:host-gateway \
@@ -57,11 +46,10 @@ docker run --rm -p 8002:8002 \
ui:dev
```
**Hinweise:**
- **Linux**: Verwende Docker Network und Service-Namen (`http://api:8001`)
- **macOS/finch**: Verwende `host.docker.internal` mit `--add-host` flag
- Die UI macht Server-Side API-Aufrufe beim Rendern der Seite
- Browser-seitige Realtime-Updates (SSE) gehen direkt vom Browser zur API
**Note for finch/nerdctl users:**
- finch binds ports to `127.0.0.1` by default (not `0.0.0.0`)
- Use `--add-host=host.docker.internal:host-gateway` to allow container-to-host communication
- Set `API_BASE=http://host.docker.internal:8001` to reach the API container
#### Environment Variables