Files
ModbusThermometer/ModbusThermometer.cpp
Wolfgang Hottgenroth 752eb18691 more cali stuff
2014-11-21 07:47:35 +01:00

213 lines
6.4 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "Arduino.h"
#include "Metro.h"
#include "Streaming.h"
#include "ads1210.h"
#include "led.h"
#include "SimpleModbusSlave.h"
#include "Thermometer.h"
#include "Config.h"
const uint8_t LED_PIN = 8;
const uint8_t ADC_1_CS_PIN = 9;
const uint8_t ADC_1_RDY_PIN = 7;
const uint8_t ADC_2_CS_PIN = 2;
const uint8_t ADC_2_RDY_PIN = 3;
const uint8_t CAL_ENABLE = 14;
const uint8_t CAL_OFFSET_ENABLE = 15;
const uint8_t CAL_FACTOR_ENABLE = 16;
const uint8_t MODBUS_TX_ENABLE_PIN = 6;
const uint8_t MODBUS_ID = 3;
const uint32_t MODBUS_BAUD = 1200;
const uint16_t CALIBRATION_CYCLES = 30;
const uint8_t NUM_OF_CHANNELS = 2;
ADS1210 ads1210[NUM_OF_CHANNELS];
Thermometer thermometer[NUM_OF_CHANNELS];
LED led;
Metro secondTick = Metro(1000);
uint32_t uptimeSeconds = 0;
typedef enum { e_CAL_IDLE, e_CAL_RUNNING, e_CAL_SET, e_CAL_COMPLETE } tCalibrationState;
bool calibrationOffsetEnabled = false;
bool calibrationFactorEnabled = false;
tCalibrationState calibrationState = e_CAL_IDLE;
uint16_t calibrationCycleCnt = 0;
float calibrationValueSum[NUM_OF_CHANNELS];
struct {
struct {
union {
uint32_t in;
uint16_t modbusRegisters[2];
} adcValue;
union {
float in;
uint16_t modbusRegisters[2];
} adcU;
union {
float in;
uint16_t modbusRegisters[2];
} adcR;
union {
float in;
uint16_t modbusRegisters[2];
} calOffset;
union {
float in;
uint16_t modbusRegisters[2];
} calFactor;
union {
float in;
uint16_t modbusRegisters[2];
} temperatureRaw;
union {
float in;
uint16_t modbusRegisters[2];
} temperature;
union {
float in;
uint16_t modbusRegisters[2];
} alpha;
} channelVariables[NUM_OF_CHANNELS];
union {
uint32_t in;
uint16_t modbusRegisters[2];
} uptimeSeconds;
} modbusHoldingRegisters;
void setup() {
pinMode(CAL_ENABLE, INPUT_PULLUP);
pinMode(CAL_FACTOR_ENABLE, INPUT_PULLUP);
pinMode(CAL_OFFSET_ENABLE, INPUT_PULLUP);
delay(100);
calibrationOffsetEnable = (digitalRead(CAL_ENABLE) == 0) && (digitalRead(CAL_OFFSET_ENABLE) == 0);
calibrationFactorEnable = (digitalRead(CAL_ENABLE) == 0) && (digitalRead(CAL_FACTOR_ENABLE) == 0);
bool initializeConfig = Config::initialize();
led.begin(LED_PIN);
ads1210[0].begin(ADC_1_CS_PIN, ADC_1_RDY_PIN, initializeConfig, Config::ADC1START);
ads1210[1].begin(ADC_2_CS_PIN, ADC_2_RDY_PIN, initializeConfig, Config::ADC2START);
thermometer[0].begin(initializeConfig, Config::THERMO1START);
thermometer[1].begin(initializeConfig, Config::THERMO2START);
if (calibrationOffsetEnable || calibrationFactor Enable) {
Serial.begin(9600);
} else {
modbus_configure(&Serial, MODBUS_BAUD, SERIAL_8N2, MODBUS_ID, MODBUS_TX_ENABLE_PIN,
sizeof(modbusHoldingRegisters), (uint16_t*)(&modbusHoldingRegisters));
}
for (uint8_t i = 0; i < NUM_OF_CHANNELS; i++) {
modbusHoldingRegisters.channelVariables[i].calOffset.in = ads1210[i].getCalOffset();
modbusHoldingRegisters.channelVariables[i].calFactor.in = ads1210[i].getCalFactor();
modbusHoldingRegisters.channelVariables[i].alpha.in = thermometer[i].getAlpha();
calibrationValueSum[i] = 0.0;
}
}
void loop() {
for (uint8_t i = 0; i < NUM_OF_CHANNELS; i++) {
ads1210[i].exec();
modbusHoldingRegisters.channelVariables[i].adcValue.in = ads1210[i].getValue();
modbusHoldingRegisters.channelVariables[i].adcU.in = ads1210[i].getU();
modbusHoldingRegisters.channelVariables[i].adcR.in = ads1210[i].getR();
thermometer[i].exec(ads1210[i].getR());
modbusHoldingRegisters.channelVariables[i].temperatureRaw.in = thermometer[i].getTemperatureRaw();
modbusHoldingRegisters.channelVariables[i].temperature.in = thermometer[i].getTemperature();
if (modbusHoldingRegisters.channelVariables[i].alpha.in != thermometer[i].getAlpha()) {
thermometer[i].setAlpha(modbusHoldingRegisters.channelVariables[i].alpha.in);
}
}
if (secondTick.check() == 1) {
if ((calibrationOffsetEnable || calibrationFactorEnable) &&
(calibrationState != e_CAL_COMPLETE)) {
Serial << "Calibration enabled" << endl;
led.on();
switch (calibrationState) {
case e_CAL_IDLE:
Serial << "Calibration state idle" << endl;
for (uint8_t i = 0; i < NUM_OF_CHANNELS; i++) {
ads1210[i].setCalOffset(0.0);
ads1210[i].setCalFactor(1.0);
}
calibrationState = e_CAL_RUNNING;
break;
case e_CAL_RUNNING:
Serial << "Calibration state running" << endl;
calibrationCycleCnt++;
Serial << " Cnt: " << calibrationCycleCnt++ << endl;
for (uint8_t i = 0; i < NUM_OF_CHANNELS; i++) {
float r = ads1210[i].getR();
calibrationValueSum[i] += r;
Serial << " Channel: " << i << ", r: " << r << endl;
}
if (calibrationCycleCnt >= CALIBRATION_CYCLES) {
calibrationState = e_CAL_SET;
}
break;
case e_CAL_SET:
Serial << "Calibration state set" << endl;
// calculate and set according to selected calibration mode
if (calibrationOffsetEnable) {
// for offset calibration, the terminals needs to be shorten
// offset calibration needs to be performed first
for (uint8_t i = 0; i < NUM_OF_CHANNELS; i++) {
float offset = calibrationValueSum[i] / ((float)calibrationCycleCnt);
ads1210[i].setCalOffset(offset);
Serial << "Setting offset, Channel: " << i << ", Offset: " << offset << endl;
}
}
if (calibrationFactorEnable) {
// for factor calibration, a 1000R resistor needs to be connected
// to the terminals
for (uint8_t i = 0; i < NUM_OF_CHANNELS; i++) {
float factor = 1000.0 / (calibrationValueSum[i] / ((float)calibrationCycleCnt));
ads1210[i].setCalFactor(factor);
Serial << "Setting factor, Channel: " << i << ", Factor: " << factor << endl;
}
}
calibrationState = e_CAL_COMPLETE;
break;
default:
Serial << "Calibration state default" << endl;
calibrationState = e_CAL_COMPLETE;
break;
}
} else {
led.toggle();
}
uptimeSeconds++;
modbusHoldingRegisters.uptimeSeconds.in = uptimeSeconds;
}
if (! (calibrationOffsetEnable || calibrationFactorEnable)) {
modbus_update();
}
}