#include "LoRaWan_APP.h" #include #include #include "defines.h" #include "config.h" #include // from config.cpp extern config_t myConfig; /*LoraWan channelsmask, default channels 0-7*/ uint16_t userChannelsMask[6]={ 0x00FF,0x0000,0x0000,0x0000,0x0000,0x0000 }; /*LoraWan Class, Class A and Class C are supported*/ DeviceClass_t loraWanClass = CLASS_A; /*the application data transmission duty cycle. value in [ms].*/ uint32_t appTxDutyCycle = 15000; /*ADR enable*/ bool loraWanAdr = true; /* Indicates if the node is sending confirmed or unconfirmed messages */ bool isTxConfirmed = true; /* Application port */ uint8_t appPort = 2; /*! * Number of trials to transmit the frame, if the LoRaMAC layer did not * receive an acknowledgment. The MAC performs a datarate adaptation, * according to the LoRaWAN Specification V1.0.2, chapter 18.4, according * to the following table: * * Transmission nb | Data Rate * ----------------|----------- * 1 (first) | DR * 2 | DR * 3 | max(DR-1,0) * 4 | max(DR-1,0) * 5 | max(DR-2,0) * 6 | max(DR-2,0) * 7 | max(DR-3,0) * 8 | max(DR-3,0) * * Note, that if NbTrials is set to 1 or 2, the MAC will not decrease * the datarate, in case the LoRaMAC layer did not receive an acknowledgment */ uint8_t confirmedNbTrials = 4; RS485Class* pRS485_1; ModbusRTUClientClass* pModbusClient; /* Prepares the payload of the frame */ static void prepareTxFrame( uint8_t port ) { Serial.println("modbus operation"); appDataSize = 0; for (modbus_poll_t *slot = myConfig.modbus_poll_slots; slot->typ != 0; slot++) { Serial.printf("Slot: %d, %d, %d\r\n", slot->typ, slot->id, slot->address); switch (slot->typ) { case HOLDING_REGISTERS: { long v; if (appDataSize + sizeof(v) < LORAWAN_APP_DATA_MAX_SIZE) { v = pModbusClient->holdingRegisterRead(slot->id, slot->address); Serial.println(v); memcpy(appData + appDataSize, &v, sizeof(v)); appDataSize += sizeof(v); } else { Serial.println("too much data for LoRaWAN packet"); } } break; case INPUT_REGISTERS: { long v; if (appDataSize + sizeof(v) < LORAWAN_APP_DATA_MAX_SIZE) { v = pModbusClient->inputRegisterRead(slot->id, slot->address); Serial.println(v); memcpy(appData + appDataSize, &v, sizeof(v)); appDataSize += sizeof(v); } else { Serial.println("too much data for LoRaWAN packet"); } } break; default: Serial.println("unknown typ, doing nothing"); break; } } } RTC_DATA_ATTR bool firstrun = true; void productionSetup() { Serial1.begin(9600, SERIAL_8N1, RX_PIN, TX_PIN); pRS485_1 = new RS485Class(Serial1, TX_PIN, RE_PIN, DE_PIN); pModbusClient = new ModbusRTUClientClass(*pRS485_1); pModbusClient->begin(9600, SERIAL_8N1); Mcu.begin(); if(firstrun) { LoRaWAN.displayMcuInit(); firstrun = false; } deviceState = DEVICE_STATE_INIT; } void productionLoop() { digitalWrite(LED_GREEN, HIGH); switch( deviceState ) { case DEVICE_STATE_INIT: digitalWrite(LED_GREEN, LOW); { #if(LORAWAN_DEVEUI_AUTO) LoRaWAN.generateDeveuiByChipID(); #endif LoRaWAN.init(loraWanClass,loraWanRegion); break; } case DEVICE_STATE_JOIN: { LoRaWAN.displayJoining(); LoRaWAN.join(); break; } case DEVICE_STATE_SEND: digitalWrite(LED_BLUE, HIGH); { LoRaWAN.displaySending(); Serial.println("sending"); prepareTxFrame( appPort ); LoRaWAN.send(); deviceState = DEVICE_STATE_CYCLE; break; } case DEVICE_STATE_CYCLE: digitalWrite(LED_BLUE, LOW); { // Schedule next packet transmission txDutyCycleTime = appTxDutyCycle + randr( -APP_TX_DUTYCYCLE_RND, APP_TX_DUTYCYCLE_RND ); LoRaWAN.cycle(txDutyCycleTime); deviceState = DEVICE_STATE_SLEEP; break; } case DEVICE_STATE_SLEEP: { LoRaWAN.displayAck(); LoRaWAN.sleep(loraWanClass); break; } default: { deviceState = DEVICE_STATE_INIT; break; } } }