#include "LoRaWan_APP.h" #include #include "HT_SSD1306Wire.h" #include #include extern SSD1306Wire display; Adafruit_NeoPixel pixels(1, 45, NEO_RGB + NEO_KHZ400); /* OTAA para*/ uint8_t devEui[] = { 0x70, 0xB3, 0xD5, 0x7E, 0xD0, 0x06, 0x44, 0xF0 }; uint8_t appEui[] = { 0xa0, 0x57, 0x81, 0x00, 0x01, 0x12, 0xaa, 0xf4 }; uint8_t appKey[] = { 0x88, 0x88, 0x81, 0x88, 0x89, 0x88, 0x88, 0xa8, 0x88, 0x68, 0x88, 0x85, 0x88, 0x80, 0x66, 0x01 }; /* ABP para*/ uint8_t nwkSKey[] = { 0x15, 0xb1, 0xd0, 0xef, 0xa4, 0x63, 0xdf, 0xbe, 0x3d, 0x11, 0x18, 0x1e, 0x1e, 0xc7, 0xda,0x85 }; uint8_t appSKey[] = { 0xd7, 0x2c, 0x78, 0x75, 0x8c, 0xdc, 0xca, 0xbf, 0x55, 0xee, 0x4a, 0x77, 0x8d, 0x16, 0xef,0x67 }; uint32_t devAddr = ( uint32_t )0x007e6ae1; /*LoraWan channelsmask, default channels 0-7*/ uint16_t userChannelsMask[6]={ 0x00FF,0x0000,0x0000,0x0000,0x0000,0x0000 }; /*LoraWan region, select in arduino IDE tools*/ LoRaMacRegion_t loraWanRegion = ACTIVE_REGION; /*LoraWan Class, Class A and Class C are supported*/ DeviceClass_t loraWanClass = CLASS_C; /*the application data transmission duty cycle. value in [ms].*/ uint32_t appTxDutyCycle = 60000; /*OTAA or ABP*/ bool overTheAirActivation = true; /*ADR enable*/ bool loraWanAdr = true; /* Indicates if the node is sending confirmed or unconfirmed messages */ bool isTxConfirmed = true; /* Application port */ uint8_t appPort = 2; /*! * Number of trials to transmit the frame, if the LoRaMAC layer did not * receive an acknowledgment. The MAC performs a datarate adaptation, * according to the LoRaWAN Specification V1.0.2, chapter 18.4, according * to the following table: * * Transmission nb | Data Rate * ----------------|----------- * 1 (first) | DR * 2 | DR * 3 | max(DR-1,0) * 4 | max(DR-1,0) * 5 | max(DR-2,0) * 6 | max(DR-2,0) * 7 | max(DR-3,0) * 8 | max(DR-3,0) * * Note, that if NbTrials is set to 1 or 2, the MAC will not decrease * the datarate, in case the LoRaMAC layer did not receive an acknowledgment */ uint8_t confirmedNbTrials = 4; typedef enum { off_e, red_e, green_e, yellow_e, blue_e, white_e } color_t; static void led(color_t color) { switch (color) { case off_e: pixels.setPixelColor(0, pixels.Color(0,0,0)); break; case red_e: pixels.setPixelColor(0, pixels.Color(50,0,0)); break; case yellow_e: pixels.setPixelColor(0, pixels.Color(50,50,0)); break; case green_e: pixels.setPixelColor(0, pixels.Color(0,50,0)); break; case blue_e: pixels.setPixelColor(0, pixels.Color(0,0,50)); break; case white_e: pixels.setPixelColor(0, pixels.Color(255,255,255)); break; } pixels.show(); } static void printDisplay(float co2con, float temp, float hum, unsigned long restTime, bool calibrationRunning) { display.clear(); char dispbuf[128]; sprintf(dispbuf, "%.0f ppm CO2", co2con); display.drawString(1, 0, dispbuf); sprintf(dispbuf, "%.0f °C", temp); display.drawString(1, 17, dispbuf); if (calibrationRunning) { sprintf(dispbuf, "Calib. in %d s", restTime); display.drawString(1, 34, dispbuf); } else { sprintf(dispbuf, "%.0f %%H", hum); display.drawString(1, 34, dispbuf); } display.display(); } SensirionI2cScd30 sensor; static char errorMessage[128]; static int16_t error; static int calibrationMode; static unsigned long calibrationStartTime; /* Prepares the payload of the frame */ static void prepareTxFrame( uint8_t port ) { /*appData size is LORAWAN_APP_DATA_MAX_SIZE which is defined in "commissioning.h". *appDataSize max value is LORAWAN_APP_DATA_MAX_SIZE. *if enabled AT, don't modify LORAWAN_APP_DATA_MAX_SIZE, it may cause system hanging or failure. *if disabled AT, LORAWAN_APP_DATA_MAX_SIZE can be modified, the max value is reference to lorawan region and SF. *for example, if use REGION_CN470, *the max value for different DR can be found in MaxPayloadOfDatarateCN470 refer to DataratesCN470 and BandwidthsCN470 in "RegionCN470.h". */ led(white_e); struct __attribute__((__packed__)) { uint8_t status; int32_t co2con; int32_t temp; int32_t hum; int32_t bri; } values; float co2con = 0.0; float temp = 0.0; float hum = 0.0; int16_t error = sensor.blockingReadMeasurementData(co2con, temp, hum); if (error != NO_ERROR) { values.status = 0; values.co2con = 0; values.temp = 0; values.hum = 0; } else { values.status = 1; values.co2con = co2con * 100; values.temp = temp * 100; values.hum = hum * 100; } values.bri = analogRead(6); Serial.print("status: "); Serial.print(values.status); Serial.print("\t"); Serial.print("co2Concentration: "); Serial.print(co2con); Serial.print("\t"); Serial.print("temperature: "); Serial.print(temp); Serial.print("\t"); Serial.print("humidity: "); Serial.print(hum); Serial.print("\t"); Serial.print("brightness: "); Serial.print(values.bri); Serial.println(); appDataSize = sizeof(values); memcpy(appData, &values, sizeof(values)); long waitTimeForCalibration = 0; if (calibrationMode == LOW) { waitTimeForCalibration = (60 * 10) - ((millis() - calibrationStartTime) / 1000); if (waitTimeForCalibration <= 0) { Serial.println("Execute calibration now"); error = sensor.forceRecalibration(400); if (error != NO_ERROR) { Serial.print("Error trying to execute forceRecalibration(): "); errorToString(error, errorMessage, sizeof errorMessage); Serial.println(errorMessage); } calibrationMode = HIGH; } else { Serial.print("Waiting for calibration: "); Serial.print(waitTimeForCalibration); Serial.println(); } } #define TONECNTMAX 10 static int toneCnt = TONECNTMAX; if (calibrationMode == HIGH) { if (co2con < 1100) { led(green_e); toneCnt = TONECNTMAX; } else if (co2con < 2000) { led(yellow_e); if (toneCnt >= TONECNTMAX) { tone(7, 500, 250); toneCnt = 0; } toneCnt++; } else { led(red_e); tone(7, 1000, 250); toneCnt = TONECNTMAX; } } printDisplay(co2con, temp, hum, waitTimeForCalibration, (calibrationMode == LOW)); } //if true, next uplink will add MOTE_MAC_DEVICE_TIME_REQ void setup() { Serial.begin(115200); digitalWrite(Vext,LOW); display.init(); display.setFont(ArialMT_Plain_16); display.clear(); display.display(); display.drawString(1, 0, "Start up"); display.display(); pixels.begin(); pixels.setPixelColor(0, pixels.Color(0,0,0)); led(off_e); pinMode(46, INPUT_PULLUP); calibrationMode = digitalRead(46); if (calibrationMode == LOW) { calibrationStartTime = millis(); led(blue_e); } else { led(off_e); } pinMode(7, OUTPUT); tone(7, 1000, 500); pinMode(6, INPUT); Wire1.begin(41, 42, 10000); //sensor.begin(Wire, SCD30_I2C_ADDR_61); sensor.begin(Wire1, 0x61); sensor.stopPeriodicMeasurement(); delay(2000); sensor.softReset(); delay(2000); uint8_t major = 0; uint8_t minor = 0; error = sensor.readFirmwareVersion(major, minor); if (error != NO_ERROR) { Serial.print("Error trying to execute readFirmwareVersion(): "); errorToString(error, errorMessage, sizeof errorMessage); Serial.println(errorMessage); } else { Serial.print("firmware version major: "); Serial.print(major); Serial.print("\t"); Serial.print("minor: "); Serial.print(minor); Serial.println(); } error = sensor.startPeriodicMeasurement(0); if (error != NO_ERROR) { Serial.print("Error trying to execute startPeriodicMeasurement(): "); errorToString(error, errorMessage, sizeof errorMessage); Serial.println(errorMessage); } Mcu.begin(); deviceState = DEVICE_STATE_INIT; } void loop() { switch( deviceState ) { case DEVICE_STATE_INIT: { #if(LORAWAN_DEVEUI_AUTO) LoRaWAN.generateDeveuiByChipID(); #endif LoRaWAN.init(loraWanClass,loraWanRegion); break; } case DEVICE_STATE_JOIN: { LoRaWAN.join(); break; } case DEVICE_STATE_SEND: { prepareTxFrame( appPort ); LoRaWAN.send(); deviceState = DEVICE_STATE_CYCLE; break; } case DEVICE_STATE_CYCLE: { // Schedule next packet transmission txDutyCycleTime = appTxDutyCycle + randr( -APP_TX_DUTYCYCLE_RND, APP_TX_DUTYCYCLE_RND ); LoRaWAN.cycle(txDutyCycleTime); deviceState = DEVICE_STATE_SLEEP; break; } case DEVICE_STATE_SLEEP: { LoRaWAN.sleep(loraWanClass); break; } default: { deviceState = DEVICE_STATE_INIT; break; } } }