badesee-device/sketch/production.cpp

152 lines
3.9 KiB
C++

#include "LoRaWan_APP.h"
#include "defines.h"
#include "configuration.h"
#include <string.h>
#include <OneWire.h>
#include <DallasTemperature.h>
// from config.cpp
extern config_t myConfig;
/*LoraWan channelsmask, default channels 0-7*/
uint16_t userChannelsMask[6]={ 0x00FF,0x0000,0x0000,0x0000,0x0000,0x0000 };
/*LoraWan Class, Class A and Class C are supported*/
DeviceClass_t loraWanClass = CLASS_A;
/*the application data transmission duty cycle. value in [ms].*/
uint32_t appTxDutyCycle = 15000;
/*ADR enable*/
bool loraWanAdr = true;
/* Indicates if the node is sending confirmed or unconfirmed messages */
bool isTxConfirmed = true;
/* Application port */
uint8_t appPort = 2;
/*!
* Number of trials to transmit the frame, if the LoRaMAC layer did not
* receive an acknowledgment. The MAC performs a datarate adaptation,
* according to the LoRaWAN Specification V1.0.2, chapter 18.4, according
* to the following table:
*
* Transmission nb | Data Rate
* ----------------|-----------
* 1 (first) | DR
* 2 | DR
* 3 | max(DR-1,0)
* 4 | max(DR-1,0)
* 5 | max(DR-2,0)
* 6 | max(DR-2,0)
* 7 | max(DR-3,0)
* 8 | max(DR-3,0)
*
* Note, that if NbTrials is set to 1 or 2, the MAC will not decrease
* the datarate, in case the LoRaMAC layer did not receive an acknowledgment
*/
uint8_t confirmedNbTrials = 4;
OneWire oneWire(ONE_WIRE);
DallasTemperature DS18B20(&oneWire);
/* Prepares the payload of the frame */
static void prepareTxFrame( uint8_t port )
{
DS18B20.begin();
uint8_t cnt = DS18B20.getDS18Count();
Serial.printf("cnt: %d\n\r", cnt);
const uint8_t SLOT_WIDTH = 8 + 4; // 8 bytes address, 4 bytes value
appDataSize = cnt * SLOT_WIDTH;
uint8_t *buf = appData;
for (uint8_t i = 0; i < cnt; i++) {
uint8_t *addr = (buf + (i * SLOT_WIDTH));
uint32_t *value = (uint32_t*) (buf + (i * SLOT_WIDTH) + 8);
DS18B20.getAddress(addr, 0);
Serial.printf("%02x %02x %02x %02x %02x %02x %02x %02x\n\r", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], addr[6], addr[7]);
DS18B20.requestTemperatures(); // send the command to get temperatures
*value = DS18B20.getTemp(addr);
Serial.printf("tempC: %08x\n\r", *value);
}
}
void downLinkDataHandle(McpsIndication_t *mcpsIndication)
{
Serial.printf("+REV DATA:%s,RXSIZE %d,PORT %d\r\n",mcpsIndication->RxSlot?"RXWIN2":"RXWIN1",mcpsIndication->BufferSize,mcpsIndication->Port);
Serial.print("+REV DATA:");
for(uint8_t i=0;i<mcpsIndication->BufferSize;i++)
{
Serial.printf("%02X",mcpsIndication->Buffer[i]);
}
Serial.println();
uint32_t color=mcpsIndication->Buffer[0]<<16|mcpsIndication->Buffer[1]<<8|mcpsIndication->Buffer[2];
}
RTC_DATA_ATTR bool firstrun = true;
void productionSetup() {
Serial.println("Starting");
Mcu.begin();
deviceState = DEVICE_STATE_INIT;
}
void productionLoop()
{
digitalWrite(LED_GREEN, HIGH);
switch( deviceState )
{
case DEVICE_STATE_INIT:
digitalWrite(LED_GREEN, LOW);
{
LoRaWAN.generateDeveuiByChipID();
LoRaWAN.init(loraWanClass,loraWanRegion);
break;
}
case DEVICE_STATE_JOIN:
{
Serial.println("Joining");
LoRaWAN.join();
break;
}
case DEVICE_STATE_SEND:
digitalWrite(LED_BLUE, HIGH);
{
Serial.println("sending");
prepareTxFrame( appPort );
LoRaWAN.send();
deviceState = DEVICE_STATE_CYCLE;
break;
}
case DEVICE_STATE_CYCLE:
digitalWrite(LED_BLUE, LOW);
{
// Schedule next packet transmission
txDutyCycleTime = appTxDutyCycle + randr( -APP_TX_DUTYCYCLE_RND, APP_TX_DUTYCYCLE_RND );
LoRaWAN.cycle(txDutyCycleTime);
deviceState = DEVICE_STATE_SLEEP;
break;
}
case DEVICE_STATE_SLEEP:
{
LoRaWAN.sleep(loraWanClass);
break;
}
default:
{
deviceState = DEVICE_STATE_INIT;
break;
}
}
}