badesee-device/sketch/production.cpp

140 lines
3.6 KiB
C++

#include "LoRaWan_APP.h"
#include "defines.h"
#include "configuration.h"
#include <string.h>
#include <OneWire.h>
#include <DallasTemperature.h>
// from config.cpp
extern config_t myConfig;
/*LoraWan channelsmask, default channels 0-7*/
uint16_t userChannelsMask[6]={ 0x00FF,0x0000,0x0000,0x0000,0x0000,0x0000 };
/*LoraWan Class, Class A and Class C are supported*/
DeviceClass_t loraWanClass = CLASS_A;
/*the application data transmission duty cycle. value in [ms].*/
uint32_t appTxDutyCycle = SEND_PERIOD;
/*ADR enable*/
bool loraWanAdr = true;
/* Indicates if the node is sending confirmed or unconfirmed messages */
bool isTxConfirmed = true;
/* Application port */
uint8_t appPort = 2;
/*!
* Number of trials to transmit the frame, if the LoRaMAC layer did not
* receive an acknowledgment. The MAC performs a datarate adaptation,
* according to the LoRaWAN Specification V1.0.2, chapter 18.4, according
* to the following table:
*
* Transmission nb | Data Rate
* ----------------|-----------
* 1 (first) | DR
* 2 | DR
* 3 | max(DR-1,0)
* 4 | max(DR-1,0)
* 5 | max(DR-2,0)
* 6 | max(DR-2,0)
* 7 | max(DR-3,0)
* 8 | max(DR-3,0)
*
* Note, that if NbTrials is set to 1 or 2, the MAC will not decrease
* the datarate, in case the LoRaMAC layer did not receive an acknowledgment
*/
uint8_t confirmedNbTrials = 4;
OneWire oneWire(ONE_WIRE);
DallasTemperature DS18B20(&oneWire);
/* Prepares the payload of the frame */
static void prepareTxFrame( uint8_t port )
{
struct {
uint16_t status;
uint16_t u_bat;
struct {
uint64_t addr;
int32_t value;
} __attribute__((packed)) sensors[NUM_OF_SENSORS];
} __attribute__((packed)) msg;
memset(&msg, 0, sizeof(msg));
DS18B20.begin();
DS18B20.requestTemperatures();
uint8_t cnt = DS18B20.getDS18Count();
cnt = (cnt > NUM_OF_SENSORS) ? NUM_OF_SENSORS : cnt;
for (uint8_t i = 0; i < cnt; i++) {
DS18B20.getAddress(((uint8_t*)(&(msg.sensors[i].addr))), i);
Serial.printf("%d: %016llx\n\r", i, msg.sensors[i].addr);
msg.sensors[i].value = DS18B20.getTemp(((const uint8_t*)(&(msg.sensors[i].addr))));
Serial.printf("v: %08x\n\r", msg.sensors[i].value);
}
msg.u_bat = analogRead(U_ADC_IN);
Serial.printf("u_bat: %d\n\r", msg.u_bat);
appDataSize = sizeof(msg);
memcpy(&appData, (void*)&msg, appDataSize);
Serial.println("Send");
}
void productionSetup() {
Serial.println("Starting");
Mcu.begin();
deviceState = DEVICE_STATE_INIT;
}
void productionLoop()
{
static uint32_t goingToSleepTime = 0;
static uint8_t subStateSleep = 0;
static uint32_t myCycleTime = 0;
if (deviceState != DEVICE_STATE_SLEEP) {
Serial.printf("State: %d\n\r", deviceState);
}
switch( deviceState ) {
case DEVICE_STATE_INIT:
LoRaWAN.generateDeveuiByChipID();
LoRaWAN.init(loraWanClass,loraWanRegion);
break;
case DEVICE_STATE_JOIN:
Serial.println("Joining");
LoRaWAN.join();
break;
case DEVICE_STATE_SEND:
digitalWrite(LED_BLUE, HIGH);
Serial.println("sending");
prepareTxFrame( appPort );
LoRaWAN.send();
deviceState = DEVICE_STATE_CYCLE;
break;
case DEVICE_STATE_CYCLE:
digitalWrite(LED_BLUE, LOW);
// Schedule next packet transmission
txDutyCycleTime = appTxDutyCycle + randr( -APP_TX_DUTYCYCLE_RND, APP_TX_DUTYCYCLE_RND );
LoRaWAN.cycle(txDutyCycleTime);
deviceState = DEVICE_STATE_SLEEP;
break;
case DEVICE_STATE_SLEEP:
LoRaWAN.sleep(loraWanClass);
break;
default:
deviceState = DEVICE_STATE_INIT;
break;
}
}