Files
elo-rezept-rechner/src/Run.py
Wolfgang Hottgenroth d308fd662a
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
logging, 4
2024-01-31 15:05:58 +01:00

183 lines
5.4 KiB
Python

from flask import Flask, request, render_template, jsonify, redirect, url_for, g
import sqlite3
from flask_oidc import OpenIDConnect
from werkzeug.middleware.proxy_fix import ProxyFix
import os
import json
import psycopg2
import logging
app = Flask(__name__)
app.config.update({
'SECRET_KEY': os.environ['SECRET'],
'DEBUG': False,
'OIDC_CLIENT_SECRETS': json.loads(os.environ['CLIENT_SECRETS']),
'OIDC_ID_TOKEN_COOKIE_SECURE': False,
'OIDC_USER_INFO_ENABLED': True,
'OIDC_OPENID_REALM': 'hottis',
'OIDC_SCOPES': ['openid', 'email', 'profile']
})
oidc = OpenIDConnect(app)
app.logger.handlers = logging.getLogger('gunicorn.error').handlers
def calculate_nutrition(food, weight):
try:
conn = psycopg2.connect()
with conn.cursor() as cursor:
# Abfrage der Nährwertdaten aus der Datenbank
cursor.execute('SELECT kcal, EW, Fett, KH, BST, CA FROM nutrition_table WHERE name = %s', (food,))
result = cursor.fetchone()
if result:
# Runden und Berechnen der Nährwerte basierend auf dem Gewicht
kcal, ew, fett, kh, bst, ca = result
nutrition_values = [
round(kcal * weight / 100), # kcal gerundet auf ganze Zahl
round(ew * weight / 100, 1), # EW gerundet auf eine Dezimalstelle
round(fett * weight / 100, 1), # Fett gerundet auf eine Dezimalstelle
round(kh * weight / 100, 1), # KH gerundet auf eine Dezimalstelle
round(bst * weight / 100, 1), # BST gerundet auf eine Dezimalstelle
round(ca * weight / 100) # CA gerundet auf ganze Zahl
]
return nutrition_values
else:
return None
finally:
if conn:
conn.close()
# Index-Route
@app.route('/')
@oidc.require_login
def index():
return render_template('index.html')
# ...
@app.route('/get_products')
@oidc.require_login
def get_products():
try:
conn = psycopg2.connect()
with conn.cursor() as cursor:
cursor.execute('SELECT name FROM nutrition_table')
products = cursor.fetchall()
return {'products': [product[0] for product in products]}
finally:
if conn:
conn.close()
# Route zum Hinzufügen und Berechnen von Lebensmitteln
@app.route('/add_lm', methods=['GET'])
@oidc.require_login
def add_lm():
food = request.args.get('food')
weight = float(request.args.get('weight'))
nutrition = calculate_nutrition(food, weight)
if nutrition:
# Extrahieren der einzelnen Nährwerte
kcal, ew, fett, kh, bst, ca = nutrition
return jsonify({
"food": food,
"kcal": kcal,
"ew": ew,
"fett": fett,
"kh": kh,
"bst": bst,
"ca": ca
})
else:
return "Lebensmittel nicht gefunden.", 404
def convert_decimal(value):
try:
return float(value.replace(',', '.'))
except (ValueError, TypeError):
return 0.0 # Rückgabe eines Standardwertes im Fehlerfall
@app.route('/add_nutrition', methods=['POST'])
@oidc.accept_token(['openid'])
def add_nutrition():
app.logger.info("add_nutrition")
food = request.form.get('food')
kcal = convert_decimal(request.form.get('kcal'))
ew = convert_decimal(request.form.get('ew'))
fett = convert_decimal(request.form.get('fett'))
kh = convert_decimal(request.form.get('kh'))
bst = convert_decimal(request.form.get('bst'))
ca = convert_decimal(request.form.get('ca'))
# Verbindung zur Datenbank herstellen und Daten einfügen
try:
conn = psycopg2.connect()
with conn.cursor() as cursor:
cursor.execute("INSERT INTO nutrition_table (name, kcal, ew, fett, kh, bst, ca) VALUES (%s, %s, %s, %s, %s, %s, %s)",
(food, kcal, ew, fett, kh, bst, ca))
conn.commit()
return redirect(url_for('nutrition'))
except Exception as e:
app.logger.warn(f"error in add_nutrition: {e}")
return jsonify({"error": str(e)}), 500
finally:
if conn:
conn.close()
@app.route('/nutrition')
@oidc.require_login
def nutrition():
return render_template('nutrition.html')
@app.route('/get_token')
@oidc.require_login
def get_token():
return jsonify(token=oidc.get_access_token())
@app.route('/get_database_entries')
@oidc.require_login
def get_database_entries():
try:
# Ersetzen Sie diese Werte mit Ihren Datenbank-Verbindungsinformationen
conn = psycopg2.connect()
cursor = conn.cursor()
with conn.cursor() as cursor:
cursor.execute("SELECT name, kcal, ew, fett, kh, bst, ca FROM nutrition_table ORDER BY name")
entries = cursor.fetchall()
# Umwandeln der Daten in ein JSON-freundliches Format
entries_list = []
for entry in entries:
entries_list.append({
"food": entry[0],
"kcal": entry[1],
"ew": entry[2],
"fett": entry[3],
"kh": entry[4],
"bst": entry[5],
"ca": entry[6]
})
return jsonify(entries_list)
except Exception as e:
return jsonify({"error": str(e)}), 500
finally:
if conn:
conn.close()
exposed_app = ProxyFix(app, x_for=1, x_host=1)