library(DBI) library(tidyr) library(dplyr) library(lubridate) library(R.utils) get_freq_df <- function(con, startDate, endDate) { startStr <- strftime(startDate, "%Y-%m-%d %H:%M:%S", tz="UTC") endStr <- strftime(endDate, "%Y-%m-%d %H:%M:%S", tz="UTC") # get from database res <-dbSendQuery(con, "select time, location, freq from mainsfrequency where valid=1 and time >= $1 and time < $2") dbBind(res, list(startStr, endStr)) frequencies <- dbFetch(res) dbClearResult(res) # get values from all location at one time in a row freq_wide <- frequencies %>% pivot_wider(names_from = location, values_from = freq, values_fn = mean) # remove measurement error (frequency gradient greater than THRESHOLD) THRESHOLD <- 0.5 for (colIdx in 2:length(freq_wide)) { last <- freq_wide[[1, colIdx]] for (rowIdx in 1:length(freq_wide[[colIdx]])) { current <- freq_wide[[rowIdx, colIdx]] if (!is.na(current) && !is.na(last) && (abs(current - last) > THRESHOLD)) { freq_wide[[rowIdx, colIdx]] = NA } last <- current } } return (freq_wide) } con <- dbConnect(RPostgres::Postgres(), dbname='mainscnt', host='172.16.10.27', user='wn') START <- "2021-08-12 00:00:00" INTERVAL <- 3600 freq_deviation_integrals <- data.frame() for (offset in 0:23) { startDate <- ymd_hms(START) + INTERVAL * offset endDate <- startDate + INTERVAL # get prepared and sanitized data from database freq_wide <- get_freq_df(con, startDate, endDate) # location_names <- names(freq_wide)[-1] for (colIdx in 1:length(location_names)) { colName.mean <- paste("mean.w.o.", location_names[colIdx], sep="") colName.diff <- paste(location_names[colIdx], ".to.mean", sep="") freq_wide <- freq_wide %>% rowwise() %>% mutate(!!colName.mean := mean(c_across(location_names[- colIdx]), na.rm=TRUE)) %>% mutate(!!colName.diff := abs(eval(as.name(colName.mean)) - eval(as.name(location_names[colIdx])))) } means <- freq_wide %>% select(ends_with(".to.mean")) sum.means <- apply(means, 2, sum, na.rm=TRUE) #printf("start: %s, end: %s\n", startDate, endDate) #print(sum.means) #printf("\n") next.row.no <- nrow(freq_deviation_integrals) + 1 freq_deviation_integrals[next.row.no, c(1, 2)] <- c(strftime(startDate, "%Y-%m-%d %H:%M:%S", tz="UTC"), strftime(endDate, "%Y-%m-%d %H:%M:%S", tz="UTC")) freq_deviation_integrals[next.row.no, c(3:(2 + length(sum.means)))] <- sum.means[order(names(sum.means))] } names(freq_deviation_integrals) <- c("startDate", "endDate", sort(location_names)) for (colIdx in 1:length(location_names)) { freq_deviation_integrals[,ncol(freq_deviation_integrals)+1] <- c(0, diff(freq_deviation_integrals[,2+colIdx],1)) names(freq_deviation_integrals)[length(location_names)+2+colIdx] = paste("diff", sort(location_names)[colIdx], sep=".") } dbDisconnect(con) x1 <- freq_deviation_integrals %>% select(c('endDate', starts_with('diff.'))) %>% pivot_longer(cols = starts_with('diff.'), names_to = 'location', names_pattern = "diff.(.*)", values_to = 'coa2m') p <- ggplot(x1, aes(x=endDate, y=coa2m, color=location)) + geom_point() + theme(axis.text.x = element_text(angle = 90)) print(p)